Zero-inflated and spatial correlated Common Scoter data

Alain F. Zuur, Peter van Horssen, Elena N. Leno, Anatoly A. Saveliev, M.J.M. Poot

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

Abstract

This book begins with an introduction to generalised additive models (GAM) using stable isotope ratios from squid. In Chapter 2 we explain additive mixed effects using polar bear movement data. In Chapter 3 we apply additive mixed effects models on coral reef data. Ruddy turnstone data are used in Chapter 4 to explain Poisson generalised additive mixed effects models (GAMMs) using the gamm4 package. A simulation study is applied to investigate the effect unbalanced random effects. In Chapter 5 parasite data sampled on anchovy fishes are used to explain overdispersed Poisson GAMM, negative binomial GAMM, and NB-P GAMM models. We briefly discuss generalised Poisson models for underdispersed data. In Chapters 6 and 7 two-dimensional smoothers are applied on zero-inflated guillemots and harbour porpoise datasets. A short revision of zero-inflated models is included. Gamma GAMMs are applied on two-way nested tree data in Chapter 8. In Chapter 9 binary nested data are analysed using binomial GAMM. In Chapter 10 we analyse maximum length of cod fishes. The generalised extreme value distribution is used. The data are from a large number of spatial locations and we use INLA to implement spatial correlation. In Chapter 11 sea ducks are analysed using zero-inflated Poisson GAMMs (and GLMMs) with spatial correlation. We again use INLA. Throughout the book we contrast frequentist and Bayesian approaches. All R code is either included and explained in the book or is available from the website for the book.
Original languageEnglish
Title of host publicationA beginner's guide to generalised additive mixed models with R
Publication statusPublished - Jan 2014

Fingerprint

Dive into the research topics of 'Zero-inflated and spatial correlated Common Scoter data'. Together they form a unique fingerprint.

Cite this