Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese

Michiel P. Boom*, Thomas K. Lameris, Kees H.T. Schreven, Nelleke H. Buitendijk, Sander Moonen, Peter P. de Vries, Elmira Zaynagutdinova, Bart A. Nolet, Henk P. van der Jeugd, Götz Eichhorn

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)

Abstract

Performing migratory journeys comes with energetic costs, which have to be compensated within the annual cycle. An assessment of how and when such compensation occurs is ideally done by comparing full annual cycles of migratory and non-migratory individuals of the same species, which is rarely achieved. We studied free-living migratory and resident barnacle geese belonging to the same flyway (metapopulation), and investigated when differences in foraging activity occur, and when foraging extends beyond available daylight, indicating a diurnal foraging constraint in these usually diurnal animals. We compared foraging activity of migratory (N = 94) and resident (N = 30) geese throughout the annual cycle using GPS-transmitters and 3D-accelerometers, and corroborated this with data on seasonal variation in body condition. Migratory geese were more active than residents during most of the year, amounting to a difference of over 370 h over an entire annual cycle. Activity differences were largest during the periods that comprised preparation for spring and autumn migration. Lengthening days during spring facilitated increased activity, which coincided with an increase in body condition. Both migratory and resident geese were active at night during winter, but migratory geese were also active at night before autumn migration, resulting in a period of night-time activity that was 6 weeks longer than in resident geese. Our results indicate that, at least in geese, seasonal migration requires longer daily activity not only during migration but throughout most of the annual cycle, with migrants being more frequently forced to extend foraging activity into the night.

Original languageEnglish
Pages (from-to)287-298
Number of pages12
JournalOecologia
Volume202
Issue number2
DOIs
Publication statusPublished - Jun 2023

Keywords

  • Annual cycle
  • Day length
  • Foraging
  • Migration
  • Residency

Fingerprint

Dive into the research topics of 'Year-round activity levels reveal diurnal foraging constraints in the annual cycle of migratory and non-migratory barnacle geese'. Together they form a unique fingerprint.

Cite this