TY - JOUR
T1 - When soils become sediments
T2 - Large-scale storage of soils in sandpits and lakes and the impact of reduction kinetics on heavy metals and arsenic release to groundwater
AU - Vink, Jos P.M.
AU - van Zomeren, Andre
AU - Dijkstra, Joris J.
AU - Comans, Rob N.J.
PY - 2017
Y1 - 2017
N2 - Simulating the storage of aerobic soils under water, the chemical speciation of heavy metals and arsenic was studied over a long-term reduction period. Time-dynamic and redox-discrete measurements in reactors were used to study geochemical changes. Large kinetic differences in the net-complexation quantities of heavy metals with sulfides was observed, and elevated pore water concentrations remained for a prolonged period (>1 year) specifically for As, B, Ba, Co, Mo, and Ni. Arsenic is associated to the iron phases as a co-precipitate or sorbed fraction to Fe-(hydr)oxides, and it is being released into solution as a consequence of the reduction of iron. The composition of dissolved organic matter (DOM) in reducing pore water was monitored, and relative contributions of fulvic, humic and hydrophylic compounds were measured via analytical batch procedures. Quantitative and qualitative shifts in organic compounds occur during reduction; DOM increased up to a factor 10, while fulvic acids become dominant over humic acids which disappear altogether as reduction progresses. Both the hydrophobic and hydrophilic fractions increase and may even become the dominant fraction. Reactive amorphous and crystalline iron phases, as well as dissolved FeII/FeIII speciation, were measured and used as input for the geochemical model to improve predictions for risk assessment to suboxic and anaerobic environments. The release of arsenic is related to readily reducible iron fractions that may be identified by 1 mM CaCl2 extraction procedure. Including DOM concentration shifts and compositional changes during reduction significantly improved model simulations, enabling the prediction of peak concentrations and identification of soils with increased emission risk. Practical methods are suggested to facilitate the practice of environmentally acceptable soil storage under water.
AB - Simulating the storage of aerobic soils under water, the chemical speciation of heavy metals and arsenic was studied over a long-term reduction period. Time-dynamic and redox-discrete measurements in reactors were used to study geochemical changes. Large kinetic differences in the net-complexation quantities of heavy metals with sulfides was observed, and elevated pore water concentrations remained for a prolonged period (>1 year) specifically for As, B, Ba, Co, Mo, and Ni. Arsenic is associated to the iron phases as a co-precipitate or sorbed fraction to Fe-(hydr)oxides, and it is being released into solution as a consequence of the reduction of iron. The composition of dissolved organic matter (DOM) in reducing pore water was monitored, and relative contributions of fulvic, humic and hydrophylic compounds were measured via analytical batch procedures. Quantitative and qualitative shifts in organic compounds occur during reduction; DOM increased up to a factor 10, while fulvic acids become dominant over humic acids which disappear altogether as reduction progresses. Both the hydrophobic and hydrophilic fractions increase and may even become the dominant fraction. Reactive amorphous and crystalline iron phases, as well as dissolved FeII/FeIII speciation, were measured and used as input for the geochemical model to improve predictions for risk assessment to suboxic and anaerobic environments. The release of arsenic is related to readily reducible iron fractions that may be identified by 1 mM CaCl2 extraction procedure. Including DOM concentration shifts and compositional changes during reduction significantly improved model simulations, enabling the prediction of peak concentrations and identification of soils with increased emission risk. Practical methods are suggested to facilitate the practice of environmentally acceptable soil storage under water.
KW - Bioavailability
KW - Dissolved organic matter
KW - Redox
KW - Risk assessment
KW - Speciation
U2 - 10.1016/j.envpol.2017.04.016
DO - 10.1016/j.envpol.2017.04.016
M3 - Article
AN - SCOPUS:85018280592
SN - 0269-7491
VL - 227
SP - 146
EP - 156
JO - Environmental Pollution
JF - Environmental Pollution
ER -