Wheat bran glucuronoarabinoxylans : biochemical and physical aspects

M.E.F. Schooneveld - Bergmans

Research output: Thesisinternal PhD, WU

Abstract

<p>Arabinoxylans are present in cereal cell walls and in vitro they have interesting physicochemical properties, such as viscosity and gelation. Although many studies on these properties were reported for wheat flour arabinoxylan, not much research has been directed towards exploitation of these polysaccharides as food gum. For that purpose glucuronoarabinoxylans of wheat bran, a cheap by-product of the cereal industry, were studied with regard to their extractability, their structural and physicochemical properties.<p>Approximately 50% of the glucuronoarabinoxylans of wheat bran cell wall material were recovered in high purity by barium hydroxide extraction at 70 to 95°C. Delignification or other treatments to open up the cell wall structure were not effective in increasing the yield. The extracted glucuronoarabinoxylans were very diverse in chemical structure and physicochemical properties. About 30% of them had a low degree of substitution, were easily degradable by xylanolytic enzymes and hardly influenced the viscosity of the solvent as a result of extensive aggregation. Over 50% of them had a high degree of substitution, were supposed to contain dimeric branches of arabinose and xylose, were scarcely degradable by xylanolytic enzymes, gave moderate viscosity to solutions and were very effective in stabilizing emulsions. The structure of these glucuronoarabinoxylans could only be speculated upon and it could not be enzymatically modified as a consequence of its complexity and the lack of appropriate enzymes. The remaining glucuronoarabinoxylans either had an intermediate or very high degree of substitution, of which the latter was presumed to be connected to lignin-fragments.<p>Gel-forming glucuronoarabinoxylans were recovered only in low yield by dilute alkali extraction and subsequent purification was necessary. These feruloylated glucuronoarabinoxylans gelled upon addition of oxidative agents, of which peroxide - peroxidase, glucose - glucoseoxidase - peroxidase and ammonium persulphate were investigated. In comparison with wheat flour arabinoxylans, those of wheat bran appeared to give less flexible networks at high concentration, which was ascribed to their high degree of substitution and high ferulic acid content. Of the dimers formed upon cross-linking, the generally known diferulic acid, being a 5-5 coupled dimer, was only present in relatively low amounts. Dimers, in which the 8-position of the ferulic acid residue is involved were preponderant. The distribution of the dimers was not affected by the type of cross- linking agent or the type of arabinoxylan. However, the presence of lignin fragments in the bran extract was presumed to cause a low ferulic acid recovery upon cross-linking.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
Supervisors/Advisors
  • Voragen, A.G.J., Promotor, External person
  • Beldman, G., Promotor, External person
Award date24 Jun 1997
Place of PublicationS.l.
Publisher
Print ISBNs9789054857167
Publication statusPublished - 1997

Keywords

  • cereals
  • milling
  • Triticum aestivum
  • wheat
  • hexaploidy
  • food
  • foods
  • carbohydrates
  • starch
  • fibre
  • polysaccharides
  • structure
  • chemical reactions

Fingerprint Dive into the research topics of 'Wheat bran glucuronoarabinoxylans : biochemical and physical aspects'. Together they form a unique fingerprint.

Cite this