Weakly supervised alignment of multisensor images

Diego Marcos Gonzalez, Gustau Camps-Valls, Devis Tuia

Research output: Chapter in Book/Report/Conference proceedingConference paperAcademicpeer-review

6 Citations (Scopus)

Abstract

Manifold alignment has become very popular in recent literature. Aligning data distributions prior to product generation is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. We propose a methodology that finds a common representation among data spaces from different sensors using geographic image correspondences, or semantic ties. To cope with the strong deformations between the data spaces considered, we propose to add nonlineari-ties by expanding the input space with Gaussian Radial Basis Function (RBF) features with respect to the centroids of a partitioning of the data. Such features allow us to cope with nonlinear transformations, while keeping a simple and efficient linear formulation. The proposed method is multi-domain and does not require co-registration, rather only a partial degree of spatial overlap. We test it on a challenging problem of multisensor classification transferring a model trained on a WorldView 2 image to predict land cover of a 3-bands or-thophoto and show that we can transfer the model with an accuracy comparable to the one that would have been obtained by a model trained on the target image with an image-specific ground truth.

Original languageEnglish
Title of host publication2015 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015 - Proceedings
PublisherIEEE
Pages2588-2591
Number of pages4
ISBN (Print)9781479979295
DOIs
Publication statusPublished - 10 Nov 2015
Externally publishedYes
EventIEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015 - Milan, Italy
Duration: 26 Jul 201531 Jul 2015

Publication series

NameInternational Geoscience and Remote Sensing Symposium (IGARSS)
Volume2015-November

Conference

ConferenceIEEE International Geoscience and Remote Sensing Symposium, IGARSS 2015
Country/TerritoryItaly
CityMilan
Period26/07/1531/07/15

Fingerprint

Dive into the research topics of 'Weakly supervised alignment of multisensor images'. Together they form a unique fingerprint.

Cite this