Water level affects availability of optimal feeding habitats for threatened migratory waterbirds

Yaara Aharon-rotman, John Mcevoy, Zheng Zhaoju, Hui Yu, Xin Wang, Yali Si, Zhenggang Xu, Zeng Yuan, Wooseog Jeong, Lei Cao, Anthony D. Fox

Research output: Contribution to journalArticleAcademicpeer-review


Extensive ephemeral wetlands at Poyang Lake, created by dramatic seasonal changes in water level, constitute the main wintering site for migratory Anatidae in China. Reductions in wetland area during the last 15 years have led to proposals to build a Poyang Dam to retain high winter water levels within the lake. Changing the natural hydrological system will affect waterbirds dependent on water level changes for food availability and accessibility. We tracked two goose species with different feeding behaviors (greater white‐fronted geese Anser albifrons [grazing species] and swan geese Anser cygnoides [tuber‐feeding species]) during two winters with contrasting water levels (continuous recession in 2015; sustained high water in 2016, similar to those predicted post‐Poyang Dam), investigating the effects of water level change on their habitat selection based on vegetation and elevation. In 2015, white‐fronted geese extensively exploited sequentially created mudflats, feeding on short nutritious graminoid swards, while swan geese excavated substrates along the water edge for tubers. This critical dynamic ecotone successively exposes subaquatic food and supports early‐stage graminoid growth during water level recession. During sustained high water levels in 2016, both species selected mudflats, but also to a greater degree of habitats with longer established seasonal graminoid swards because access to tubers and new graminoid growth was restricted under high‐water conditions. Longer established graminoid swards offer less energetically profitable forage for both species. Substantial reduction in suitable habitat and confinement to less profitable forage by higher water levels is likely to reduce the ability of geese to accumulate sufficient fat stores for migration, with potential carryover effects on subsequent survival and reproduction. Our results suggest that high water levels in Poyang Lake should be retained during summer, but permitted to gradually recede, exposing new areas throughout winter to provide access for waterbirds from all feeding guilds.
Original languageEnglish
Pages (from-to)10440-10450
JournalEcology and Evolution
Issue number23
Publication statusPublished - 1 Dec 2017

Fingerprint Dive into the research topics of 'Water level affects availability of optimal feeding habitats for threatened migratory waterbirds'. Together they form a unique fingerprint.

Cite this