Vegetation composition of Lolium perenne-dominated grasslands under organic and convential farming

H.F. van Dobben*, C. Quik, G.W.W. Wamelink, E.A. Lantinga

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Agricultural intensification has caused a decline of semi-natural grasslands and loss of botanical diversity, making Agricultural fields dominated by Lolium perenne the main grassland system in large areas of Europe. Increased insight into the factors determining their vegetation composition and plant species richness is needed to improve the effectiveness of agri-environment schemes and to substantiate the benefits of organic over conventional agriculture. Our aims were (1) to determine the difference in vegetation composition (including species richness) between Lolium perenne-dominated fields of conventional and organic farms in a case study region in The Netherlands, and (2) to identify the soil and management related drivers behind this difference.
We collected vegetation, soil and management data in grasslands of dairy farms under conventional or organic management (45 fields in total), and used multivariate statistics to determine the effect of fertilisation rates, grazing and cutting regime, and soil properties on plant species composition. In a next step we determined to what extent these abiotic drivers differ between organic and conventional farms.
On average the organic fields appeared to have a c. 30% higher plant species richness compared to the conventional ones. Vegetation composition was most strongly influenced by groundwater level and nitrogen and phosphorus fertilisation rates, and to a lesser extent by plant-available soil potassium, mowing date, total soil nitrogen, potassium fertilisation rate, age of each field, and livestock (cow or sheep). In general, a low fertilisation rate, high groundwater level, late mowing, low level of plant-available potassium, high level of total soil nitrogen, old fields and the presence of sheep promote a high species richness. However, of these variables only nitrogen fertilisation rate and groundwater level differ significantly between the organic and conventional farms and are therefore likely to be the abiotic drivers of the difference in species richness and vegetation composition between the farm types. Of these two, the difference in nitrogen fertilisation rate is a direct result of a difference in management philosophy, but the difference in groundwater level is not. We hypothesize that the latter difference is caused by economic drivers, whereby a less productive soil is an incentive for a changeover to organic farming. If this is the case indeed, the application of agri-environment schemes would be most effective in less productive (and naturally more species-rich) sites.
Original languageEnglish
Pages (from-to)45-53
JournalBasic and Applied Ecology
Volume36
Early online date15 Mar 2019
DOIs
Publication statusPublished - May 2019

Fingerprint

Lolium perenne
farming systems
grasslands
grassland
species diversity
species richness
vegetation
water table
farm
nitrogen
soil
farms
groundwater
potassium
mowing
soil nitrogen
sheep
agricultural intensification
organic farming
old field

Cite this

@article{34a152ec3b554e7ab8d304b0bb0b5d64,
title = "Vegetation composition of Lolium perenne-dominated grasslands under organic and convential farming",
abstract = "Agricultural intensification has caused a decline of semi-natural grasslands and loss of botanical diversity, making Agricultural fields dominated by Lolium perenne the main grassland system in large areas of Europe. Increased insight into the factors determining their vegetation composition and plant species richness is needed to improve the effectiveness of agri-environment schemes and to substantiate the benefits of organic over conventional agriculture. Our aims were (1) to determine the difference in vegetation composition (including species richness) between Lolium perenne-dominated fields of conventional and organic farms in a case study region in The Netherlands, and (2) to identify the soil and management related drivers behind this difference.We collected vegetation, soil and management data in grasslands of dairy farms under conventional or organic management (45 fields in total), and used multivariate statistics to determine the effect of fertilisation rates, grazing and cutting regime, and soil properties on plant species composition. In a next step we determined to what extent these abiotic drivers differ between organic and conventional farms.On average the organic fields appeared to have a c. 30{\%} higher plant species richness compared to the conventional ones. Vegetation composition was most strongly influenced by groundwater level and nitrogen and phosphorus fertilisation rates, and to a lesser extent by plant-available soil potassium, mowing date, total soil nitrogen, potassium fertilisation rate, age of each field, and livestock (cow or sheep). In general, a low fertilisation rate, high groundwater level, late mowing, low level of plant-available potassium, high level of total soil nitrogen, old fields and the presence of sheep promote a high species richness. However, of these variables only nitrogen fertilisation rate and groundwater level differ significantly between the organic and conventional farms and are therefore likely to be the abiotic drivers of the difference in species richness and vegetation composition between the farm types. Of these two, the difference in nitrogen fertilisation rate is a direct result of a difference in management philosophy, but the difference in groundwater level is not. We hypothesize that the latter difference is caused by economic drivers, whereby a less productive soil is an incentive for a changeover to organic farming. If this is the case indeed, the application of agri-environment schemes would be most effective in less productive (and naturally more species-rich) sites.",
author = "{van Dobben}, H.F. and C. Quik and G.W.W. Wamelink and E.A. Lantinga",
year = "2019",
month = "5",
doi = "10.1016/j.baae.2019.03.002",
language = "English",
volume = "36",
pages = "45--53",
journal = "Basic and Applied Ecology",
issn = "1439-1791",
publisher = "Elsevier",

}

Vegetation composition of Lolium perenne-dominated grasslands under organic and convential farming. / van Dobben, H.F.; Quik, C.; Wamelink, G.W.W.; Lantinga, E.A.

In: Basic and Applied Ecology, Vol. 36, 05.2019, p. 45-53.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Vegetation composition of Lolium perenne-dominated grasslands under organic and convential farming

AU - van Dobben, H.F.

AU - Quik, C.

AU - Wamelink, G.W.W.

AU - Lantinga, E.A.

PY - 2019/5

Y1 - 2019/5

N2 - Agricultural intensification has caused a decline of semi-natural grasslands and loss of botanical diversity, making Agricultural fields dominated by Lolium perenne the main grassland system in large areas of Europe. Increased insight into the factors determining their vegetation composition and plant species richness is needed to improve the effectiveness of agri-environment schemes and to substantiate the benefits of organic over conventional agriculture. Our aims were (1) to determine the difference in vegetation composition (including species richness) between Lolium perenne-dominated fields of conventional and organic farms in a case study region in The Netherlands, and (2) to identify the soil and management related drivers behind this difference.We collected vegetation, soil and management data in grasslands of dairy farms under conventional or organic management (45 fields in total), and used multivariate statistics to determine the effect of fertilisation rates, grazing and cutting regime, and soil properties on plant species composition. In a next step we determined to what extent these abiotic drivers differ between organic and conventional farms.On average the organic fields appeared to have a c. 30% higher plant species richness compared to the conventional ones. Vegetation composition was most strongly influenced by groundwater level and nitrogen and phosphorus fertilisation rates, and to a lesser extent by plant-available soil potassium, mowing date, total soil nitrogen, potassium fertilisation rate, age of each field, and livestock (cow or sheep). In general, a low fertilisation rate, high groundwater level, late mowing, low level of plant-available potassium, high level of total soil nitrogen, old fields and the presence of sheep promote a high species richness. However, of these variables only nitrogen fertilisation rate and groundwater level differ significantly between the organic and conventional farms and are therefore likely to be the abiotic drivers of the difference in species richness and vegetation composition between the farm types. Of these two, the difference in nitrogen fertilisation rate is a direct result of a difference in management philosophy, but the difference in groundwater level is not. We hypothesize that the latter difference is caused by economic drivers, whereby a less productive soil is an incentive for a changeover to organic farming. If this is the case indeed, the application of agri-environment schemes would be most effective in less productive (and naturally more species-rich) sites.

AB - Agricultural intensification has caused a decline of semi-natural grasslands and loss of botanical diversity, making Agricultural fields dominated by Lolium perenne the main grassland system in large areas of Europe. Increased insight into the factors determining their vegetation composition and plant species richness is needed to improve the effectiveness of agri-environment schemes and to substantiate the benefits of organic over conventional agriculture. Our aims were (1) to determine the difference in vegetation composition (including species richness) between Lolium perenne-dominated fields of conventional and organic farms in a case study region in The Netherlands, and (2) to identify the soil and management related drivers behind this difference.We collected vegetation, soil and management data in grasslands of dairy farms under conventional or organic management (45 fields in total), and used multivariate statistics to determine the effect of fertilisation rates, grazing and cutting regime, and soil properties on plant species composition. In a next step we determined to what extent these abiotic drivers differ between organic and conventional farms.On average the organic fields appeared to have a c. 30% higher plant species richness compared to the conventional ones. Vegetation composition was most strongly influenced by groundwater level and nitrogen and phosphorus fertilisation rates, and to a lesser extent by plant-available soil potassium, mowing date, total soil nitrogen, potassium fertilisation rate, age of each field, and livestock (cow or sheep). In general, a low fertilisation rate, high groundwater level, late mowing, low level of plant-available potassium, high level of total soil nitrogen, old fields and the presence of sheep promote a high species richness. However, of these variables only nitrogen fertilisation rate and groundwater level differ significantly between the organic and conventional farms and are therefore likely to be the abiotic drivers of the difference in species richness and vegetation composition between the farm types. Of these two, the difference in nitrogen fertilisation rate is a direct result of a difference in management philosophy, but the difference in groundwater level is not. We hypothesize that the latter difference is caused by economic drivers, whereby a less productive soil is an incentive for a changeover to organic farming. If this is the case indeed, the application of agri-environment schemes would be most effective in less productive (and naturally more species-rich) sites.

U2 - 10.1016/j.baae.2019.03.002

DO - 10.1016/j.baae.2019.03.002

M3 - Article

VL - 36

SP - 45

EP - 53

JO - Basic and Applied Ecology

JF - Basic and Applied Ecology

SN - 1439-1791

ER -