Value of quality controlled citizen science data for rainfall-runoff characterization in a rapidly urbanizing catchment

Getahun Kebede Mengistie*, Kirubel Demissie Wondimagegnehu, David W. Walker, Alemseged Tamiru Haile

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

The major concern of applying citizen science in water resources is the quality of the data. However, there are limited scientific studies addressing this concern and showing the data value. In this study, we established a citizen science program in the Akaki catchment which hosts Addis Ababa, Ethiopia. Citizen scientists monitored river stage at multiple gauging sites for multiple years. We evaluated the quality of citizen science data through a systematic quality control. Reference data was obtained from neighboring stations of the citizen science program and professionals while the evaluation involved graphical inspections and statistical methods. The quality-controlled data were applied to evaluate the spatial and temporal variation of rainfall-runoff relationships. Initially, large numbers of suspicious data were detected using single station data but that was significantly reduced when the data of multiple sites were compared. Further comparison against professional data revealed excellent agreement with high correlation coefficient (r >0.95), and low centered root mean square error (RMSE) <0.03–0.08 mm. The citizen science data indicated a large difference in rainfall-runoff relationship over the dominantly urban and rural sub-catchments. The citizen science data allowed comparison of runoff coefficient and base flow index for recent and historical periods where recent streamflow data is unavailable from a formal data source. This study illustrates the immense value of (i) multiple data quality assessment steps for building confidence on the quality of citizen science data, and (ii) citizen science for enhancing our understanding of rainfall-runoff relationships and change in a rapidly urbanizing catchment.

Original languageEnglish
Article number130639
JournalJournal of Hydrology
Volume629
DOIs
Publication statusPublished - Feb 2024

Keywords

  • Citizen Science
  • Data quality control
  • Rainfall-runoff
  • River stage
  • Urbanization

Fingerprint

Dive into the research topics of 'Value of quality controlled citizen science data for rainfall-runoff characterization in a rapidly urbanizing catchment'. Together they form a unique fingerprint.

Cite this