TY - JOUR
T1 - Valorization of CH4 emissions into high-added-value products
T2 - Assessing the production of ectoine coupled with CH4 abatement
AU - Cantera, Sara
AU - Lebrero, Raquel
AU - Sadornil, Lidia
AU - García-Encina, Pedro A.
AU - Muñoz, Raúl
PY - 2016/11/1
Y1 - 2016/11/1
N2 - This study assessed an innovative strategy for the valorization of dilute methane emissions based on the bio-conversion of CH4 (the second most important greenhouse gas (GHG)) into ectoine by the methanotrophic ectoine-producing strain Methylomicrobium alcaliphilum 20 Z. The influence of CH4 (2–20%), Cu2+ (0.05–50 μM) and NaCl (0–9%) concentration as well as temperature (25–35 °C) on ectoine synthesis and specific CH4 biodegradation rate was evaluated for the first time. Concentrations of 20% CH4 (at 3% NaCl, 0.05 μM Cu2+, 25 °C) and 6% NaCl (at 4% CH4, 0.05 μM Cu2+, 25 °C) supported the maximum intra-cellular ectoine production yield (31.0 ±1.7 and 66.9 ±4.2 mg g biomass−1, respectively). On the other hand, extra-cellular ectoine concentrations of up to 4.7 ± 0.1 mg L−1 were detected at high Cu2+concentrations (50 μM), despite this methanotroph has not been previously classified as an ectoine-excreting strain. This research demonstrated the feasibility of the bio-conversion of dilute emissions of methane into high-added value products in an attempt to develop a sustainable GHG bioeconomy.
AB - This study assessed an innovative strategy for the valorization of dilute methane emissions based on the bio-conversion of CH4 (the second most important greenhouse gas (GHG)) into ectoine by the methanotrophic ectoine-producing strain Methylomicrobium alcaliphilum 20 Z. The influence of CH4 (2–20%), Cu2+ (0.05–50 μM) and NaCl (0–9%) concentration as well as temperature (25–35 °C) on ectoine synthesis and specific CH4 biodegradation rate was evaluated for the first time. Concentrations of 20% CH4 (at 3% NaCl, 0.05 μM Cu2+, 25 °C) and 6% NaCl (at 4% CH4, 0.05 μM Cu2+, 25 °C) supported the maximum intra-cellular ectoine production yield (31.0 ±1.7 and 66.9 ±4.2 mg g biomass−1, respectively). On the other hand, extra-cellular ectoine concentrations of up to 4.7 ± 0.1 mg L−1 were detected at high Cu2+concentrations (50 μM), despite this methanotroph has not been previously classified as an ectoine-excreting strain. This research demonstrated the feasibility of the bio-conversion of dilute emissions of methane into high-added value products in an attempt to develop a sustainable GHG bioeconomy.
KW - Ectoine
KW - Greenhouse gas
KW - Methane biorefinery
KW - Methane treatment
U2 - 10.1016/j.jenvman.2016.07.064
DO - 10.1016/j.jenvman.2016.07.064
M3 - Article
C2 - 27472052
AN - SCOPUS:84979289509
VL - 182
SP - 160
EP - 165
JO - Journal of Environmental Management
JF - Journal of Environmental Management
SN - 0301-4797
ER -