Uptake, translocation and elimination in sediment-rooted macrophytes: A model-supported analysis of whole sediment toxicity test data

Research output: Contribution to journalArticleAcademicpeer-review

19 Citations (Scopus)

Abstract

Understanding bioaccumulation in sediment-rooted macrophytes is crucial for the development of sediment toxicity tests using macrophytes. Here we explore bioaccumulation in sediment-rooted macrophytes by tracking and modelling chemical flows of chlorpyrifos, linuron, and six PCBs in water-sediment-macrophyte systems. Chemical fluxes across the interfaces between pore water, overlying water, shoots, and roots were modelled using a novel multi-compartment model. The modelling yielded the first mass transfer parameter set reported for bioaccumulation by sediment-rooted macrophytes, with satisfactory narrow confidence limits for more than half of the estimated parameters. Exposure via the water column led to rapid uptake by Elodea canadensis and Myriophyllum spicatum shoots, followed by transport to the roots within 1-3 days, after which tissue concentrations gradually declined. Translocation played an important role in the exchange between shoots and roots. Exposure via spiked sediment led to gradual uptake by the roots, but subsequent transport to the shoots and overlying water remained limited for the chemicals studied. These contrasting patterns show that exposure is sensitive to test set up, chemical properties, and species traits. Although field-concentrations in water and sediment will differ from those in the tests, the model parameters can be assumed applicable for modelling exposure to macrophytes in the field.
Original languageEnglish
Pages (from-to)12344-12353
JournalEnvironmental Science and Technology
Volume48
Issue number20
DOIs
Publication statusPublished - 2014

Keywords

  • hydrophobic organic-chemicals
  • polychlorinated-biphenyls
  • myriophyllum-aquaticum
  • aromatic-hydrocarbons
  • translocation
  • pesticides
  • plants
  • fluxes
  • carbon
  • bioaccumulation

Fingerprint

Dive into the research topics of 'Uptake, translocation and elimination in sediment-rooted macrophytes: A model-supported analysis of whole sediment toxicity test data'. Together they form a unique fingerprint.

Cite this