Upstream and downstream controls of recent avulsions on the Taquari megafan, Pantanal, south-western Brazil

B. Makaske, B.H.P. Maathuis, C.R. Padovani, C. Stolker, E. Mosselman, R.H.G. Jongman

Research output: Contribution to journalArticleAcademicpeer-review

36 Citations (Scopus)

Abstract

Avulsion, the natural relocation of a river, is a key process in the evolution of subaerial fans, river floodplains and deltas. The causes of avulsion are poorly understood, which is partly due to the scarcity of field studies of present avulsions. At present, two avulsions are occurring on the middle and lower Taquari megafan, Pantanal basin, south-western Brazil. Here we present an analysis of the causes of these avulsions based on field and remote sensing data and show that avulsions on megafans can be controlled by both upstream and downstream processes. The middle fan avulsion (started in 1997–1998) is a result of upstream control: overbank aggradation was caused by the (variable) input of sandy sediment into the system, which caused channel-belt superelevation and also created an easily erodible subsurface favouring bank retreat, crevassing, and scour of deep floodplain channels. The sandy subsurface in this area is inferred to have been a major factor in the causation of this avulsion under conditions of little gradient advantage. The lower fan avulsion (started c. 1990) results from interplay of upstream and downstream controls, the latter being related to the local base level (the Paraguay River floodplain) at the toe of the fan. Channel and overbank aggradation on the lower fan was influenced by fan sub-lobe progradation and channel backfilling. Fan sub-lobe progradation caused a significant gradient advantage of the avulsion channel over the parent channel. Avulsions are commonly supposed to be preferentially triggered by high-magnitude floods, when there is considerable channel-belt superelevation. However, both avulsions studied by us were triggered by small to average floods, with modest channel-belt superelevation. We conclude that flood magnitude and channel-belt superelevation have been overrated as causes of avulsion, and demonstrate additional causes that influence the growth of crevasses into avulsions.
Original languageEnglish
Pages (from-to)1313-1326
JournalEarth Surface Processes and Landforms
Volume37
Issue number12
DOIs
Publication statusPublished - 2012

Keywords

  • rhine-meuse delta
  • upper columbia river
  • british-columbia
  • channel belts
  • bighorn basin
  • netherlands
  • floodplain
  • deposits
  • architecture
  • aggradation

Fingerprint Dive into the research topics of 'Upstream and downstream controls of recent avulsions on the Taquari megafan, Pantanal, south-western Brazil'. Together they form a unique fingerprint.

Cite this