TY - JOUR
T1 - Upscaling peatland mapping with drone-derived imagery: impact of spatial resolution and vegetation characteristics
AU - Steenvoorden, Jasper
AU - Limpens, Juul
PY - 2023/12/31
Y1 - 2023/12/31
N2 - Northern peatland functions are strongly associated with vegetation structure and composition. While large-scale monitoring of functions through remotely sensed mapping of vegetation patterns is therefore promising, knowledge on the interdependency between spatial resolution of acquired imagery, spatial vegetation characteristics, and resulting mapping accuracy needs to be improved. We evaluated how classification accuracy of commonly used vegetation mapping units (microforms and plant functional types) was affected by spatial resolution of acquired imagery and several spatial characteristics of the vegetation itself (size, shape, configuration, and diversity). To this end, we collected very high-resolution drone imagery (<0.05 m) from eight Irish peatlands differing in vegetation composition and pattern complexity in September 2021 and 2022. We then resampled this imagery from pixel sizes of 0.027–1 m and classified both mapping units at all unique spatial resolutions. Hereafter, we computed spatial vegetation characteristics for each of the eight classified images at 0.027 m spatial resolution to determine their role in defining minimum spatial resolution requirements for both microforms and plant functional types. We found that overall classification accuracy of microforms and plant functional types was consistently high (>90%) for all studied peatlands until average spatial resolutions were reached of 0.5 m ± 0.2 m and 0.25 m ± 0.1 m, respectively. However, variability within mapping units was considerable, with overall minimum spatial resolution ranging between 0.25 and 0.7 m for microforms and between 0.15 and 0.35 m for plant functional types. Individual classes even varied from 0.05 to 1 m. Furthermore, spatial vegetation characteristics were important drivers of minimum spatial resolution for microforms, but not for plant functional types. Particularly, peatlands with larger, compacter, and more clustered microform patches could be classified with coarser spatial resolution imagery (up to 0.7 m), while peatlands with small, complex, diverse, and more finely distributed patches required higher spatial resolutions (minimally 0.25 m). Based on these findings, we conclude that spatial vegetation characteristics strongly determine minimum required spatial resolution and thus affect upscaling of peatland vegetation mapping beyond the landscape scale by constraining the use of specific remote sensing platforms.
AB - Northern peatland functions are strongly associated with vegetation structure and composition. While large-scale monitoring of functions through remotely sensed mapping of vegetation patterns is therefore promising, knowledge on the interdependency between spatial resolution of acquired imagery, spatial vegetation characteristics, and resulting mapping accuracy needs to be improved. We evaluated how classification accuracy of commonly used vegetation mapping units (microforms and plant functional types) was affected by spatial resolution of acquired imagery and several spatial characteristics of the vegetation itself (size, shape, configuration, and diversity). To this end, we collected very high-resolution drone imagery (<0.05 m) from eight Irish peatlands differing in vegetation composition and pattern complexity in September 2021 and 2022. We then resampled this imagery from pixel sizes of 0.027–1 m and classified both mapping units at all unique spatial resolutions. Hereafter, we computed spatial vegetation characteristics for each of the eight classified images at 0.027 m spatial resolution to determine their role in defining minimum spatial resolution requirements for both microforms and plant functional types. We found that overall classification accuracy of microforms and plant functional types was consistently high (>90%) for all studied peatlands until average spatial resolutions were reached of 0.5 m ± 0.2 m and 0.25 m ± 0.1 m, respectively. However, variability within mapping units was considerable, with overall minimum spatial resolution ranging between 0.25 and 0.7 m for microforms and between 0.15 and 0.35 m for plant functional types. Individual classes even varied from 0.05 to 1 m. Furthermore, spatial vegetation characteristics were important drivers of minimum spatial resolution for microforms, but not for plant functional types. Particularly, peatlands with larger, compacter, and more clustered microform patches could be classified with coarser spatial resolution imagery (up to 0.7 m), while peatlands with small, complex, diverse, and more finely distributed patches required higher spatial resolutions (minimally 0.25 m). Based on these findings, we conclude that spatial vegetation characteristics strongly determine minimum required spatial resolution and thus affect upscaling of peatland vegetation mapping beyond the landscape scale by constraining the use of specific remote sensing platforms.
UR - http://doi.org/10.17026/dans-29z-wqen
U2 - 10.1080/15481603.2023.2267851
DO - 10.1080/15481603.2023.2267851
M3 - Article
SN - 1548-1603
VL - 60
JO - GIScience & Remote Sensing
JF - GIScience & Remote Sensing
IS - 1
M1 - 2267851
ER -