Ultrafiltration (UF) and biological oxygen-dosed activated carbon (BODAC) filtration to prevent fouling of reversed osmosis (RO) membranes: A mass balance analysis

Sara Ribeiro Pinela*, Amanda Larasati, Roel J.W. Meulepas, Maria Cristina Gagliano, Robbert Kleerebezem, Harry Bruning, Huub H.M. Rijnaarts

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

(Bio)fouling is the most common problem in membrane processes used in water production. It is also a reported unavoidable problem, with mitigation strategies being frequently ineffective in addressing this problem. An ultrapure water plant (UPW) in Emmen (The Netherlands), fed with secondary effluent, comprises the following subsequent treatment steps: ultrafiltration (UF), biological oxygen-dosed activated carbon (BODAC) filtration and reverse osmosis (RO). The BODAC filters were designed to prevent fouling in RO membranes, and for ten years, they have been operated without significant fouling issues. The present work aims to provide insight into the role of the full-scale UF + BODAC in fouling prevention, by conducting a mass balance (MB) analysis to assess the removal/release of common fouling precursors. Positive MB results were noticed for particulate organic compounds, iron (Fe) and manganese (Mn) meaning their constant removal in the UF + BODAC. The UF + BODAC was shown to be an effective nitrification system, effectively converting all the ammonium and nitrite to nitrate. In conclusion, the combined removal of organics, Fe, and Mn species and nitrification by UF + BODAC is most likely an important factor in downstream fouling prevention, making this system an attractive process for fouling prevention. Nevertheless, further investigations to discover the mechanisms involved are needed.

Original languageEnglish
Article number104648
JournalJournal of Water Process Engineering
Volume57
DOIs
Publication statusPublished - Jan 2024

Keywords

  • Biological oxygen-dosed activated carbon
  • Fouling precursors
  • Fouling prevention
  • Mass balance
  • Ultrafiltration

Fingerprint

Dive into the research topics of 'Ultrafiltration (UF) and biological oxygen-dosed activated carbon (BODAC) filtration to prevent fouling of reversed osmosis (RO) membranes: A mass balance analysis'. Together they form a unique fingerprint.

Cite this