TY - JOUR
T1 - Two maize Kip-related proteins differentially interact with, inhibit and are phosphorylated by cyclin D-cyclin-dependent kinase complexes
AU - Godínez-Palma, Silvia K.
AU - Rosas-Bringas, Fernando R.
AU - Rosas-Bringas, Omar G.
AU - García-Ramírez, Elpidio
AU - Zamora-Zaragoza, Jorge
AU - Vázquez-Ramos, Jorge M.
PY - 2017
Y1 - 2017
N2 - The family of maize Kip-related proteins (KRPs) has been studied and a nomenclature based on the relationship to rice KRP genes is proposed. Expression studies of KRP genes indicate that all are expressed at 24 h of seed germination but expression is differential in the different tissues of maize plantlets. Recombinant KRP1;1 and KRP4;2 proteins, members of different KRP classes, were used to study association to and inhibitory activity on different maize cyclin D (CycD)-cyclin-dependent kinase (CDK) complexes. Kinase activity in CycD2;2-CDK, CycD4;2-CDK, and CycD5;3- CDK complexes was inhibited by both KRPs; however, only KRP1;1 inhibited activity in the CycD6;1-CDK complex, not KRP4;2. Whereas KRP1;1 associated with either CycD2;2 or CycD6;1, and to cyclin-dependent kinase A (CDKA) recombinant proteins, forming ternary complexes, KRP4;2 bound CDKA and CycD2;2 but did not bind CycD6;1, establishing a differential association capacity. All CycD-CDK complexes included here phosphorylated both the retinoblastoma- related (RBR) protein and the two KRPs; interestingly, while KRP4;2 phosphorylated by the CycD2;2-CDK complex increased its inhibitory capacity, when phosphorylated by the CycD6;1-CDK complex the inhibitory capacity was reduced or eliminated. Evidence suggests that the phosphorylated residues in KRP4;2 may be different for every kinase, and this would influence its performance as a cyclin-CDK inhibitor.
AB - The family of maize Kip-related proteins (KRPs) has been studied and a nomenclature based on the relationship to rice KRP genes is proposed. Expression studies of KRP genes indicate that all are expressed at 24 h of seed germination but expression is differential in the different tissues of maize plantlets. Recombinant KRP1;1 and KRP4;2 proteins, members of different KRP classes, were used to study association to and inhibitory activity on different maize cyclin D (CycD)-cyclin-dependent kinase (CDK) complexes. Kinase activity in CycD2;2-CDK, CycD4;2-CDK, and CycD5;3- CDK complexes was inhibited by both KRPs; however, only KRP1;1 inhibited activity in the CycD6;1-CDK complex, not KRP4;2. Whereas KRP1;1 associated with either CycD2;2 or CycD6;1, and to cyclin-dependent kinase A (CDKA) recombinant proteins, forming ternary complexes, KRP4;2 bound CDKA and CycD2;2 but did not bind CycD6;1, establishing a differential association capacity. All CycD-CDK complexes included here phosphorylated both the retinoblastoma- related (RBR) protein and the two KRPs; interestingly, while KRP4;2 phosphorylated by the CycD2;2-CDK complex increased its inhibitory capacity, when phosphorylated by the CycD6;1-CDK complex the inhibitory capacity was reduced or eliminated. Evidence suggests that the phosphorylated residues in KRP4;2 may be different for every kinase, and this would influence its performance as a cyclin-CDK inhibitor.
KW - CDKs
KW - Cyclins D
KW - ICK/KRPs
KW - Kinase inhibition
KW - KRP phosphorylation
KW - Zea mays
U2 - 10.1093/jxb/erx054
DO - 10.1093/jxb/erx054
M3 - Article
AN - SCOPUS:85020205338
VL - 68
SP - 1585
EP - 1597
JO - Journal of Experimental Botany
JF - Journal of Experimental Botany
SN - 0022-0957
IS - 7
ER -