TY - JOUR
T1 - Tumour necrosis factor, but not interferon-gamma is essential for acquired resistance to Listeria monocytogenes during a secondary infection in mice
AU - Samsom, J.N.
AU - Langermans, J.A.M.
AU - Savelkoul, H.F.J.
AU - van Furth, R.
PY - 1995
Y1 - 1995
N2 - Mice with a secondary Listeria monocytogenes infection eliminate the bacteria much faster and more efficiently from their organs than mice with a primary infection. During the course of a secondary infection, serum concentrations of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF) are higher than during a primary infection. The aim of the present study was to determine whether these cytokines are involved in the acquired resistance to L. monocytogenes during a secondary infection in mice. In order to neutralize cytokines, alginate-encapsulated cells, which form anti-cytokine monoclonal antibodies, were injected into the nuchal region of mice during a Listeria infection. Mice recovered from a sublethal primary Listeria infection, which acquired cell-mediated immunity, received a subcutaneous injection of anti-IFN-gamma-forming cells, or anti-TNF-forming cells, and 4 days later received an intravenous injection with 10 50% lethal dose (LD50) L. monocytogenes. The number of bacteria recovered from the liver and spleen of immune mice treated with anti-IFN-gamma-forming cells was slightly larger (approximately 1 log10) than that found for immune mice treated with anti-beta-galactosidase-forming cells, called immune control mice. The organs of immune mice treated with anti-TNF-forming cells yielded significantly more (approximately 4 log10) bacteria than those of immune control mice, more than those of immune mice treated with anti-IFN-gamma-forming cells, and comparable numbers to those of non-immune mice. Taken together, these results demonstrate that TNF is essential in acquired resistance to L. monocytogenes during a secondary infection in mice, while IFN-gamma plays a minor role
AB - Mice with a secondary Listeria monocytogenes infection eliminate the bacteria much faster and more efficiently from their organs than mice with a primary infection. During the course of a secondary infection, serum concentrations of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF) are higher than during a primary infection. The aim of the present study was to determine whether these cytokines are involved in the acquired resistance to L. monocytogenes during a secondary infection in mice. In order to neutralize cytokines, alginate-encapsulated cells, which form anti-cytokine monoclonal antibodies, were injected into the nuchal region of mice during a Listeria infection. Mice recovered from a sublethal primary Listeria infection, which acquired cell-mediated immunity, received a subcutaneous injection of anti-IFN-gamma-forming cells, or anti-TNF-forming cells, and 4 days later received an intravenous injection with 10 50% lethal dose (LD50) L. monocytogenes. The number of bacteria recovered from the liver and spleen of immune mice treated with anti-IFN-gamma-forming cells was slightly larger (approximately 1 log10) than that found for immune mice treated with anti-beta-galactosidase-forming cells, called immune control mice. The organs of immune mice treated with anti-TNF-forming cells yielded significantly more (approximately 4 log10) bacteria than those of immune control mice, more than those of immune mice treated with anti-IFN-gamma-forming cells, and comparable numbers to those of non-immune mice. Taken together, these results demonstrate that TNF is essential in acquired resistance to L. monocytogenes during a secondary infection in mice, while IFN-gamma plays a minor role
M3 - Article
VL - 86:
SP - 256-262.
JO - Immunology
JF - Immunology
SN - 0019-2805
ER -