Abstract
Urban landscapes are high phosphorus (P) consumption areas and consequently generate substantial P-containing urban solid waste (domestic kitchen wastes, animal bones, and municipal sludge), due to large population. However, urbanization can also trap P through cultivated land loss and urban solid waste disposal. Trapped urban P is an overlooked and inaccessible P stock. Here, we studied how urbanization contributes to trapped urban P and how it affects the P cycle. We take China as a case study. Our results showed that China generated a total of 13 (±0.9) Tg urban trapped P between 1992-2019. This amounts to 6 (±0.5) % of the total consumed P and 9 (±0.6) % of the chemical fertilizer P used in China over that period. The loss of cultivated land accounted for 15% of the trapped urban P, and half of this was concentrated in three provinces: Shandong, Henan, and Hebei. This is primarily since nearly one-third of the newly expanded urban areas are located within these provinces. The remaining 85% of trapped urban P was associated with urban solid waste disposal. Our findings call for more actions to preserve fertile cultivated land and promote P recovery from urban solid waste through sound waste classification and recycling systems to minimize P trapped in urban areas.
Original language | English |
---|---|
Pages (from-to) | 19243-19254 |
Journal | Environmental Science and Technology |
Volume | 58 |
Issue number | 43 |
DOIs | |
Publication status | Published - 29 Oct 2024 |
Keywords
- crop production
- legacy phosphorus
- recycling
- urban expansion
- waste disposal