Transcriptomic analyses to summarize gene expression patterns that occur during leaf initiation of Chinese cabbage

Xiao Xue Sun, Zihan Liu, Rui Liu, Johan Bucher, Jianjun Zhao*, Richard G.F. Visser*, Guusje Bonnema*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

In Chinese cabbage, rosette leaves expose their adaxial side to the light converting light energy into chemical energy, acting as a source for the growth of the leafy head. In the leafy head, the outer heading leaves expose their abaxial side to the light while the inner leaves are shielded from the light and have become a sink organ of the growing Chinese cabbage plant. Interestingly, variation in several ad/abaxial polarity genes is associated with the typical leafy head morphotype. The initiation of leaf primordia and the establishment of leaf ad/abaxial polarity are essential steps in the initiation of marginal meristem activity leading to leaf formation. Understanding the molecular genetic mechanisms of leaf primordia formation, polar differentiation, and leaf expansion is thus relevant to understand leafy head formation. As Brassica’s are mesa-hexaploids, many genes have multiple paralogues, complicating analysis of the genetic regulation of leaf development. In this study, we used laser dissection of Chinese cabbage leaf primordia and the shoot apical meristem (SAM) to compare gene expression profiles between both adaxial and abaxial sides and the SAM aiming to capture transcriptome changes underlying leaf primordia development. We highlight genes with roles in hormone pathways and transcription factors. We also assessed gene expression gradients along expanded leaf blades from the same plants to analyze regulatory links between SAM, leaf primordia and the expanding rosette leaf. The catalogue of differentially expressed genes provides insights in gene expression patterns involved in leaf development and form a starting point to unravel leafy head formation.

Original languageEnglish
Article numberuhae059
JournalHorticulture Research
Volume11
Issue number4
DOIs
Publication statusPublished - 1 Apr 2024

Fingerprint

Dive into the research topics of 'Transcriptomic analyses to summarize gene expression patterns that occur during leaf initiation of Chinese cabbage'. Together they form a unique fingerprint.

Cite this