Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension

A. Doroszuk, M.J. Jonker, N. Pul, T.M. Breit, B.J. Zwaan

Research output: Contribution to journalArticleAcademicpeer-review

29 Citations (Scopus)

Abstract

Background While studying long-lived mutants has advanced our understanding of the processes involved in ageing, the mechanisms underlying natural variation in lifespan and ageing rate remain largely unknown. Here, we characterise genome-wide expression patterns of a long-lived, natural variant of Drosophila melanogaster resulting from selection for starvation resistance (SR) and compare it with normal-lived control flies (C). We do this at two time points representing middle age (90% survival) and old age (10% survival) respectively, in three adult diets (malnutrition, optimal food, and overfeeding). Results We found profound differences between Drosophila lines in their age-related expression. Most of the age-associated changes in normal-lived flies were abrogated in long-lived Drosophila. The stress-related genes, including those involved in proteolysis and cytochrome P450, were generally higher expressed in SR flies and showed a smaller increase in expression with age compared to C flies. The genes involved in reproduction showed a lower expression in middle-aged SR than in C flies and, unlike C flies, a lack of their downregulation with age. Further, we found that malnutrition strongly affected age-associated transcript patterns overriding the differences between the lines. However, under less stressful dietary conditions, line and diet affected age-dependent expression similarly. Finally, we present lists of candidate markers of ageing and lifespan extension. Conclusions Our study unveils transcriptional changes associated with lifespan extension in SR Drosophila. The results suggest that natural genetic variation for SR and lifespan can operate through similar transcriptional mechanisms as those of dietary restriction and life-extending mutations. Keywords: Ageing; Gene expression; Microarray; Drosophila melanogaster; Natural variation; Diet
Original languageEnglish
Article number167
JournalBMC Genomics
Volume13
DOIs
Publication statusPublished - 2012

Keywords

  • genome-wide
  • starvation resistance
  • expression patterns
  • caloric restriction
  • dietary restriction
  • c-elegans
  • caenorhabditis-elegans
  • laboratory selection
  • oxidative stress
  • immune-response

Fingerprint Dive into the research topics of 'Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension'. Together they form a unique fingerprint.

Cite this