Towards more effective online environmental information provision through tailored Natural Language Generation: Profiles of Scottish river user groups and an evaluative online experiment

K.A.J. Arts*, C.J.A. Macleod, A.A.R. Ioris, X. Han, S. Sripada, J.F. Braga, Georgina Maffey, N. Jekjantuk, Cheng Zeng, R. van der Wal

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

1 Citation (Scopus)

Abstract

As a result of societal transformations, political governance shifts, and advances in ICT, online information has become crucial in efforts by public authorities to make citizens better stewards of the environment. Yet, their environmental information provision may not always be attuned to end users' rationales, behaviours and appreciations. This study revolves around dynamic river level information provided by an environmental regulator – updated once a day or more, and collected by a sensor network of 333 gauging stations along 232 Scottish rivers. Employing an elaborate mixed methods approach with qualitative and quantitative elements, we examined if profiling of web page user groups and the subsequent employment of a specially designed Natural Language Generation (NLG) system could foster more effective online information provision. We identified profiles for the three main user groups: fishing, flood risk related, and paddling. The existence of well-distinguishable rationales and characteristics was in itself an argument for profiling; the same river level information was used in entirely different ways by the three groups. We subsequently constructed an advanced online experiment that implemented NLG based on live river level data. We found that textual information can be of much value in translating dynamic technical information into straightforward messages for the specific purposes of the user groups. We conclude that tailored NLG could be widely used in more effective online environmental information provision, and we provide five practical recommendations for public authorities and other information providers.
Original languageEnglish
Pages (from-to)643-655
JournalScience of the Total Environment
Volume673
DOIs
Publication statusPublished - 10 Jul 2019

Fingerprint Dive into the research topics of 'Towards more effective online environmental information provision through tailored Natural Language Generation: Profiles of Scottish river user groups and an evaluative online experiment'. Together they form a unique fingerprint.

Cite this