TY - JOUR
T1 - Three-gradient regular solution model for simple liquids wetting complex surface topologies
AU - Akerboom, Sabine
AU - Kamperman, Marleen
AU - Leermakers, Frans A.M.
PY - 2016
Y1 - 2016
N2 - We use regular solution theory and implement a three-gradient model for a liquid/vapour system in contact with a complex surface topology to study the shape of a liquid drop in advancing and receding wetting scenarios. More specifically, we study droplets on an inverse opal: spherical cavities in a hexagonal pattern. In line with experimental data, we find that the surface may switch from hydrophilic (contact angle on a smooth surface θY <90°) to hydrophobic (effective advancing contact angle θ > 90°). Both the Wenzel wetting state, that is cavities under the liquid are filled, as well as the Cassie-Baxter wetting state, that is air entrapment in the cavities under the liquid, were observed using our approach, without a discontinuity in the water front shape or in the water advancing contact angle θ. Therefore, air entrapment cannot be the main reason why the contact angle θ for an advancing water front varies. Rather, the contact line is pinned and curved due to the surface structures, inducing curvature perpendicular to the plane in which the contact angle θ is observed, and the contact line does not move in a continuous way, but via depinning transitions. The pinning is not limited to kinks in the surface with angles θkink smaller than the angle θY. Even for θkink > θY, contact line pinning is found. Therefore, the full 3D-structure of the inverse opal, rather than a simple parameter such as the wetting state or θkink, determines the final observed contact angle.
AB - We use regular solution theory and implement a three-gradient model for a liquid/vapour system in contact with a complex surface topology to study the shape of a liquid drop in advancing and receding wetting scenarios. More specifically, we study droplets on an inverse opal: spherical cavities in a hexagonal pattern. In line with experimental data, we find that the surface may switch from hydrophilic (contact angle on a smooth surface θY <90°) to hydrophobic (effective advancing contact angle θ > 90°). Both the Wenzel wetting state, that is cavities under the liquid are filled, as well as the Cassie-Baxter wetting state, that is air entrapment in the cavities under the liquid, were observed using our approach, without a discontinuity in the water front shape or in the water advancing contact angle θ. Therefore, air entrapment cannot be the main reason why the contact angle θ for an advancing water front varies. Rather, the contact line is pinned and curved due to the surface structures, inducing curvature perpendicular to the plane in which the contact angle θ is observed, and the contact line does not move in a continuous way, but via depinning transitions. The pinning is not limited to kinks in the surface with angles θkink smaller than the angle θY. Even for θkink > θY, contact line pinning is found. Therefore, the full 3D-structure of the inverse opal, rather than a simple parameter such as the wetting state or θkink, determines the final observed contact angle.
KW - Inverse opal
KW - Regular solution model
KW - Self-consistent field theory
KW - Surface topology
KW - Wetting
U2 - 10.3762/bjnano.7.129
DO - 10.3762/bjnano.7.129
M3 - Article
AN - SCOPUS:84994052045
SN - 2190-4286
VL - 7
SP - 1377
EP - 1396
JO - Beilstein Journal of Nanotechnology
JF - Beilstein Journal of Nanotechnology
ER -