TY - JOUR
T1 - The two Rasamsonia emersonii α-glucuronidases, ReGH67 and ReGH115, show a different mode-of-action towards glucuronoxylan and glucuronoxylo-oligosaccharides
AU - Murciano Martínez, Patricia
AU - Appeldoorn, Maaike M.
AU - Gruppen, Harry
AU - Kabel, Mirjam A.
PY - 2016/5/18
Y1 - 2016/5/18
N2 - Background: The production of biofuels and biochemicals from grass-type plant biomass requires a complete utilisation of the plant cellulose and hemicellulosic xylan via enzymatic degradation to their constituent monosaccharides. Generally, physical and/or thermochemical pretreatments are performed to enable access for the subsequent added carbohydrate-degrading enzymes. Nevertheless, partly substituted xylan structures remain after pretreatment, in particular the ones substituted with (4-O-methyl-)glucuronic acids (UAme). Hence, α-glucuronidases play an important role in the degradation of UAmexylan structures facilitating the complete utilisation of plant biomass. The characterisation of α-glucuronidases is a necessity to find the right enzymes to improve degradation of recalcitrant UAmexylan structures. Results: The mode-of-action of two α-glucuronidases was demonstrated, both obtained from the fungus Rasamsonia emersonii; one belonging to the glycoside hydrolase (GH) family 67 (ReGH67) and the other to GH115 (ReGH115). Both enzymes functioned optimal at around pH 4 and 70 °C. ReGH67 was able to release UAme from UAme-substituted xylo-oligosaccharides (UAmeXOS), but only the UAme linked to the non-reducing end xylosyl residue was cleaved. In particular, in a mixture of oligosaccharides, UAmeXOS having a degree of polymerisation (DP) of two were hydrolysed to a further extent than longer UAmeXOS (DP 3-4). On the contrary, ReGH115 was able to release UAme from both polymeric UAmexylan and UAmeXOS. ReGH115 cleaved UAme from both internal and non-reducing end xylosyl residues, with the exception of UAme attached to the non-reducing end of a xylotriose oligosaccharide. Conclusion: In this research, and for the first time, we define the mode-of-action of two α-glucuronidases from two different GH families both from the ascomycete R. emersonii. To date, only four α-glucuronidases classified in GH115 are characterised. ReGH67 showed limited substrate specificity towards only UAmeXOS, cleaving UAme only when attached to the non-reducing end xylosyl residue. ReGH115 was much less substrate specific compared to ReGH67, because UAme was released from both polymeric UAmexylan and UAmeXOS, from both internal and non-reducing end xylosyl residues. The characterisation of the mode-of-action of these two α-glucuronidases helps understand how R. emersonii attacks UAmexylan in plant biomass and the knowledge presented is valuable to improve enzyme cocktails for biorefinery applications.
AB - Background: The production of biofuels and biochemicals from grass-type plant biomass requires a complete utilisation of the plant cellulose and hemicellulosic xylan via enzymatic degradation to their constituent monosaccharides. Generally, physical and/or thermochemical pretreatments are performed to enable access for the subsequent added carbohydrate-degrading enzymes. Nevertheless, partly substituted xylan structures remain after pretreatment, in particular the ones substituted with (4-O-methyl-)glucuronic acids (UAme). Hence, α-glucuronidases play an important role in the degradation of UAmexylan structures facilitating the complete utilisation of plant biomass. The characterisation of α-glucuronidases is a necessity to find the right enzymes to improve degradation of recalcitrant UAmexylan structures. Results: The mode-of-action of two α-glucuronidases was demonstrated, both obtained from the fungus Rasamsonia emersonii; one belonging to the glycoside hydrolase (GH) family 67 (ReGH67) and the other to GH115 (ReGH115). Both enzymes functioned optimal at around pH 4 and 70 °C. ReGH67 was able to release UAme from UAme-substituted xylo-oligosaccharides (UAmeXOS), but only the UAme linked to the non-reducing end xylosyl residue was cleaved. In particular, in a mixture of oligosaccharides, UAmeXOS having a degree of polymerisation (DP) of two were hydrolysed to a further extent than longer UAmeXOS (DP 3-4). On the contrary, ReGH115 was able to release UAme from both polymeric UAmexylan and UAmeXOS. ReGH115 cleaved UAme from both internal and non-reducing end xylosyl residues, with the exception of UAme attached to the non-reducing end of a xylotriose oligosaccharide. Conclusion: In this research, and for the first time, we define the mode-of-action of two α-glucuronidases from two different GH families both from the ascomycete R. emersonii. To date, only four α-glucuronidases classified in GH115 are characterised. ReGH67 showed limited substrate specificity towards only UAmeXOS, cleaving UAme only when attached to the non-reducing end xylosyl residue. ReGH115 was much less substrate specific compared to ReGH67, because UAme was released from both polymeric UAmexylan and UAmeXOS, from both internal and non-reducing end xylosyl residues. The characterisation of the mode-of-action of these two α-glucuronidases helps understand how R. emersonii attacks UAmexylan in plant biomass and the knowledge presented is valuable to improve enzyme cocktails for biorefinery applications.
KW - Biorefinery
KW - GH115
KW - GH67
KW - Rasamsonia emersonii
KW - Xylo-oligosaccharides
KW - α-Glucuronidase
U2 - 10.1186/s13068-016-0519-9
DO - 10.1186/s13068-016-0519-9
M3 - Article
AN - SCOPUS:84969261815
SN - 1754-6834
VL - 9
JO - Biotechnology for Biofuels
JF - Biotechnology for Biofuels
IS - 1
M1 - 105
ER -