TY - JOUR
T1 - The role of macrophyte structural complexity and water flow velocity in determining the epiphytic macroinvertebrate community composition in a lowland stream
AU - Wolters, Jan Willem
AU - Verdonschot, Ralf C.M.
AU - Schoelynck, Jonas
AU - Verdonschot, Piet F.M.
AU - Meire, Patrick
PY - 2018
Y1 - 2018
N2 - Habitat structural complexity provided by aquatic macrophytes in lowland streams affects the associated epiphytic macroinvertebrate assemblages in both direct (increased microhabitat diversity, refuge against predation) and indirect ways (e.g. current attenuation by physical structures). In a correlative field study carried out in two different years in a Belgian stream, we investigated the effects of the factors macrophyte identity, macrophyte complexity (represented as fractal complexity) and current velocity on the composition of the macroinvertebrate community associated with monospecific macrophyte patches, consisting of plants with differing structural complexity; Sparganium emersum Rehmann (least complex), Potamogeton natans L. (intermediate) and Callitriche obtusangula Le Gall (most complex). In addition to significantly lower within-patch current velocity being observed, vegetation stands consisting of complex macrophytes also harboured significantly richer macroinvertebrate communities than stands of simpler macrophytes. A significant part of the variation in the macroinvertebrate community composition could be explained by plant identity, macrophyte complexity and current velocity. However, it was not possible to determine the relative importance of these three factors, because of their high degree of intercorrelation. Additionally, the explanatory power of these factors was higher under conditions of high current velocity, suggesting a role of macrophyte patches as instream flow refugia for macroinvertebrates.
AB - Habitat structural complexity provided by aquatic macrophytes in lowland streams affects the associated epiphytic macroinvertebrate assemblages in both direct (increased microhabitat diversity, refuge against predation) and indirect ways (e.g. current attenuation by physical structures). In a correlative field study carried out in two different years in a Belgian stream, we investigated the effects of the factors macrophyte identity, macrophyte complexity (represented as fractal complexity) and current velocity on the composition of the macroinvertebrate community associated with monospecific macrophyte patches, consisting of plants with differing structural complexity; Sparganium emersum Rehmann (least complex), Potamogeton natans L. (intermediate) and Callitriche obtusangula Le Gall (most complex). In addition to significantly lower within-patch current velocity being observed, vegetation stands consisting of complex macrophytes also harboured significantly richer macroinvertebrate communities than stands of simpler macrophytes. A significant part of the variation in the macroinvertebrate community composition could be explained by plant identity, macrophyte complexity and current velocity. However, it was not possible to determine the relative importance of these three factors, because of their high degree of intercorrelation. Additionally, the explanatory power of these factors was higher under conditions of high current velocity, suggesting a role of macrophyte patches as instream flow refugia for macroinvertebrates.
KW - Flow velocity
KW - Functional groups
KW - Habitat complexity
KW - Phytomacrofauna
U2 - 10.1007/s10750-017-3353-6
DO - 10.1007/s10750-017-3353-6
M3 - Article
AN - SCOPUS:85028008234
SN - 0018-8158
VL - 806
SP - 157
EP - 173
JO - Hydrobiologia
JF - Hydrobiologia
IS - 1
ER -