The role of European forests in the global carbon cycle - a review

G.J. Nabuurs, R. Päivinen, R. Sikkema, G.M.J. Mohren

    Research output: Contribution to journalArticleAcademicpeer-review

    78 Citations (Scopus)

    Abstract

    The first part of this paper presents an overview of national forest carbon balance studies that have been carried out in Europe. Based on these national assessments, an estimate is made of the present role of European forests in the global carbon cycle. Differences in the methodologies applied are discussed. At present, 15 European countries have assessed a national forest and/or forest sector carbon balance. Together, these studies cover 104 million ha and present the average situation in the mid-1980s. Most of the studies have used a static methodology to convert forest inventory data into carbon. Extrapolating those studies to the total forest area of Europe (149 million ha) (excluding the FSU), yields a whole tree carbon sink of 101.3 Tg C y-1 (9.5% of the European emissions) and a whole tree carbon stock of 7929 Tg C. Although in general the applied methodologies are comparable, they differ considerably in the way net fluxes are assessed and in the applied conversion coefficients. The role of forest fires in the European forest C balance might be larger than generally expected. A disadvantage of the static methodologies used is that they often regard only the forest ecosystem part of the carbon cycle which may result in misleading results concerning the role of the total forest sector; another disadvantage is that results are only valid for the year(s) on which the data are based. The second part of the paper discusses a methodology that could be applied to all national forests and forest sectors yielding more consistent results. The possibilities of using a large-scale forestry scenario model for a study on the present and Future European forest rector carbon balance are presented. | The first part of this paper presents an overview of national forest carbon balance studies that have been carried out in Europe. Based on these national assessments, an estimate is made of the present role of European forests in the global carbon cycle. Differences in the methodologies applied are discussed. At present, 15 European countries have assessed a national forest and/or forest sector carbon balance. Together, these studies cover 104 million ha and present the average situation in the mid-1980s. Most of the studies have used a static methodology to convert forest inventory data into carbon. Extrapolating those studies to the total forest area of Europe (149 million ha) (excluding the FSU), yields a whole tree carbon sink of 101.3 Tg C y-1 (9.5% of the European emissions) and a whole tree carbon stock of 7929 Tg C. Although in general the applied methodologies are comparable, they differ considerably in the way net fluxes are assessed and in the applied conversion coefficients. The role of forest fires in the European forest C balance might be larger than generally expected. A disadvantage of the static methodologies used is that they often regard only the forest ecosystem part of the carbon cycle which may result in misleading results concerning the role of the total forest sector; another disadvantage is that results are only valid for the year(s) on which the data are based. The second part of the paper discusses a methodology that could be applied to all national forests and forest sectors yielding more consistent results. The possibilities of using a large-scale forestry scenario model for a study on the present and future European forest sector carbon balance are presented.
    Original languageEnglish
    Pages (from-to)345-358
    JournalBiomass and Bioenergy
    Volume13
    Issue number6
    DOIs
    Publication statusPublished - 1997

    Fingerprint Dive into the research topics of 'The role of European forests in the global carbon cycle - a review'. Together they form a unique fingerprint.

    Cite this