TY - JOUR
T1 - The role of albumin and the extracellular matrix on the pathophysiology of oedema formation in severe malnutrition
AU - Gonzales, Gerard Bryan
AU - Njunge, James M.
AU - Gichuki, Bonface M.
AU - Wen, Bijun
AU - Ngari, Moses
AU - Potani, Isabel
AU - Thitiri, Johnstone
AU - Laukens, Debby
AU - Voskuijl, Wieger
AU - Bandsma, Robert
AU - Vanmassenhove, Jill
AU - Berkley, James A.
PY - 2022/5
Y1 - 2022/5
N2 - Background: While fluid flows in a steady state from plasma, through interstitium, and into the lymph compartment, altered fluid distribution and oedema can result from abnormal Starling's forces, increased endothelial permeability or impaired lymphatic drainage. The mechanism of oedema formation, especially the primary role of hypoalbuminaemia, remains controversial. Here, we explored the roles of albumin and albumin-independent mechanisms in oedema formation among children with severe malnutrition (SM). Methods: We performed secondary analysis of data obtained from two independent clinical trials in Malawi and Kenya (NCT02246296 and NCT00934492). We then used an unconventional strategy of comparing children with kwashiorkor and marasmus by matching (discovery cohort, n = 144) and normalising (validation cohort, n = 98, 2 time points) for serum albumin. Untargeted proteomics was used in the discovery cohort to determine plausible albumin-independent mechanisms associated with oedema, which was validated using enzyme-linked immunosorbent assay and multiplex assays in the validation cohort. Findings: We demonstrated that low serum albumin is necessary but not sufficient to develop oedema in SM. We further found that markers of extracellular matrix (ECM) degradation rather than markers of EG degradation distinguished oedematous and non-oedematous children with SM. Interpretation: Our results show that oedema formation has both albumin-dependent and independent mechanisms. ECM integrity appears to have a greater role in oedema formation than EG shedding in SM. Funding: Research Foundation Flanders (FWO), Thrasher Foundation (15122 and 9403), VLIR-UOS-Ghent University Global Minds Fund, Bill & Melinda Gates Foundation (OPP1131320), MRC/DfID/Wellcome Trust Global Health Trials Scheme (MR/M007367/1), Canadian Institutes of Health Research (156307), Wellcome Trust (WT083579MA).
AB - Background: While fluid flows in a steady state from plasma, through interstitium, and into the lymph compartment, altered fluid distribution and oedema can result from abnormal Starling's forces, increased endothelial permeability or impaired lymphatic drainage. The mechanism of oedema formation, especially the primary role of hypoalbuminaemia, remains controversial. Here, we explored the roles of albumin and albumin-independent mechanisms in oedema formation among children with severe malnutrition (SM). Methods: We performed secondary analysis of data obtained from two independent clinical trials in Malawi and Kenya (NCT02246296 and NCT00934492). We then used an unconventional strategy of comparing children with kwashiorkor and marasmus by matching (discovery cohort, n = 144) and normalising (validation cohort, n = 98, 2 time points) for serum albumin. Untargeted proteomics was used in the discovery cohort to determine plausible albumin-independent mechanisms associated with oedema, which was validated using enzyme-linked immunosorbent assay and multiplex assays in the validation cohort. Findings: We demonstrated that low serum albumin is necessary but not sufficient to develop oedema in SM. We further found that markers of extracellular matrix (ECM) degradation rather than markers of EG degradation distinguished oedematous and non-oedematous children with SM. Interpretation: Our results show that oedema formation has both albumin-dependent and independent mechanisms. ECM integrity appears to have a greater role in oedema formation than EG shedding in SM. Funding: Research Foundation Flanders (FWO), Thrasher Foundation (15122 and 9403), VLIR-UOS-Ghent University Global Minds Fund, Bill & Melinda Gates Foundation (OPP1131320), MRC/DfID/Wellcome Trust Global Health Trials Scheme (MR/M007367/1), Canadian Institutes of Health Research (156307), Wellcome Trust (WT083579MA).
KW - Endothelial glycocalyx
KW - Extracellular matrix
KW - Oedema
KW - Proteomics
KW - Severe malnutrition
KW - Starling forces
U2 - 10.1016/j.ebiom.2022.103991
DO - 10.1016/j.ebiom.2022.103991
M3 - Article
AN - SCOPUS:85127734555
SN - 2352-3964
VL - 79
JO - EBioMedicine
JF - EBioMedicine
M1 - 103991
ER -