Abstract
Using fixed-angle ellipsometry, we investigate the degree of mass transfer upon vertically dipping a polystyrene surface through a layer of a polystyrene-poly(ethylene oxide) (PS-PEO) block copolymer at the air water interface (Langmuir-Blodgett or LB transfer). The transferred mass is proportional to the PS-PEO grafting density at the air-water interface, but the transferred mass is not equal to the mass at the air-water interface. We find that depending on the chain length of the PEO block only a certain fraction of the polymers at the air-water interface is transferred to the solid surface. For the shortest PEO chain length (PS36-PEO148), the mass transfer amounts to 94%, while for longer chain lengths (PS36-PEO370 and PS38-PEO770), a transfer of, respectively 57% and 19%, is obtained. We attribute this reduced mass transfer to a competition for the PS surface between the PEO block and the PS block. Atomic force microscopy shows that after transfer the material is evenly spread over the surface. However, upon a short heating of these transferred layers (95 °C, 5 min) a dewetting of the PS-PEO layer takes place. These results have a significant impact on the interpretation of the results in a number of papers in which the above-described transfer method was used to produce PEO polymer brushes, in a few cases in combination with heating. We briefly review these papers and discuss their main results in light of this new information. Furthermore, we show that, by using Langmuir-Schaeffer (LS, horizontal) dipping, much higher mass transfers can be reached than with the LB method. When the LB or LS methods are carefully applied, it is a very powerful technique to produce PEO brushes, as it gives full control over both the grafting density and the chain length
Original language | English |
---|---|
Pages (from-to) | 4490-4497 |
Journal | Langmuir |
Volume | 25 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2009 |
Keywords
- bovine serum-albumin
- diblock copolymer
- polyelectrolyte brushes
- poly(ethylene glycol)
- polystyrene brushes
- poly(acrylic acid)
- protein adsorption
- silica surfaces
- density
- temperature