TY - JOUR
T1 - The Phosphoglucose Isomerase from the Hyperthermophilic Archaeon Pyrococcus furiosus is a Unique Glycolytic Enzyme that belongs to the Cupin Superfamily
AU - Verhees, C.H.
AU - Huynen, M.A.
AU - Ward, D.E.
AU - Schiltz, E.
AU - de Vos, W.M.
AU - van der Oost, J.
PY - 2001
Y1 - 2001
N2 - Pyrococcus furiosus uses a variant of the Embden-Meyerhof pathway during growth on sugars. All but one of the genes that encode the glycolytic enzymes of P. furiosus have previously been identified, either by homology searching of its genome or by reversed genetics. We here report the isolation of the missing link of the pyrococcal glycolysis, the phosphoglucose isomerase (PGI), which was purified to homogeneity from P. furiosus and biochemically characterized. The P. furiosus PGI, a dimer of identical 23.5-kDa subunits, catalyzes the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate, with Km values of 1.99 and 0.63 mM, respectively. An optimum pH of 7.0 has been determined in both directions, and at its optimum temperature of 90 °C the enzyme has a half-life of 2.4 h. The N-terminal sequence was used for the identification of the pgiA gene in the P. furiosus genome. The pgiA transcription start site has been determined, and a monocistronic messenger was detected in P. furiosus during growth on maltose and pyruvate. The pgiA gene was functionally expressed in Escherichia coli BL21(DE3). The deduced amino acid sequence of this first archaeal PGI revealed that it is not related to its bacterial and eukaryal counterparts. In contrast, this archaeal PGI shares similarity with the cupin superfamily that consists of a variety of proteins that are generally involved in sugar metabolism in both prokaryotes and eukaryotes. As for the P. furiosus PGI, distinct phylogenetic origins have previously been reported for other enzymes from the pyrococcal glycolytic pathway. Apparently, convergent evolution by recruitment of several unique enzymes has resulted in the unique Pyrococcus glycolysis.
AB - Pyrococcus furiosus uses a variant of the Embden-Meyerhof pathway during growth on sugars. All but one of the genes that encode the glycolytic enzymes of P. furiosus have previously been identified, either by homology searching of its genome or by reversed genetics. We here report the isolation of the missing link of the pyrococcal glycolysis, the phosphoglucose isomerase (PGI), which was purified to homogeneity from P. furiosus and biochemically characterized. The P. furiosus PGI, a dimer of identical 23.5-kDa subunits, catalyzes the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate, with Km values of 1.99 and 0.63 mM, respectively. An optimum pH of 7.0 has been determined in both directions, and at its optimum temperature of 90 °C the enzyme has a half-life of 2.4 h. The N-terminal sequence was used for the identification of the pgiA gene in the P. furiosus genome. The pgiA transcription start site has been determined, and a monocistronic messenger was detected in P. furiosus during growth on maltose and pyruvate. The pgiA gene was functionally expressed in Escherichia coli BL21(DE3). The deduced amino acid sequence of this first archaeal PGI revealed that it is not related to its bacterial and eukaryal counterparts. In contrast, this archaeal PGI shares similarity with the cupin superfamily that consists of a variety of proteins that are generally involved in sugar metabolism in both prokaryotes and eukaryotes. As for the P. furiosus PGI, distinct phylogenetic origins have previously been reported for other enzymes from the pyrococcal glycolytic pathway. Apparently, convergent evolution by recruitment of several unique enzymes has resulted in the unique Pyrococcus glycolysis.
U2 - 10.1074/jbc.M104603200
DO - 10.1074/jbc.M104603200
M3 - Article
SN - 0021-9258
VL - 276
SP - 40926
EP - 40932
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
ER -