The maximum sustainable heat flux in stably stratified channel flows

J. Donda, I. van Hooijdonk, A.F. Moene, G.J.F. van Heijst, H. Clercx, B. van de Wiel

Research output: Contribution to journalArticleAcademicpeer-review

7 Citations (Scopus)

Abstract

In analogy to the nocturnal atmospheric boundary layer a flux-driven, cooled channel flow is studied using Direct Numerical Simulations. In agreement with earlier studies turbulence collapses when the surface cooling exceeds a critical value. In that case laminarization occurs. Here the so-called Maximum Sustainable Heat Flux hypothesis is tested. It explains why laminarization will occur at strong cooling rates. It states that in stratified flows, the downward heat flux is limited to a maximum, which, in turn, is determined by the momentum of the flow. If the heat extraction at the surface exceeds this maximum, near-surface stability will rapidly increase, which further hampers efficient vertical heat transport. This positive feedback eventually causes turbulence to be fully suppressed by the intensive density stratification. The framework is used to predict the collapse of turbulence and a good agreement between theory and simulations is found. Therefore, it is concluded that Maximum Sustainable Heat Flux mechanism explains the collapse of turbulence in this kind of flows. In future work, there is a need for extension to more realistic configurations, allowing for Coriolis effects and more realistic surface boundary conditions.
Original languageEnglish
Pages (from-to)781-792
JournalQuarterly Journal of the Royal Meteorological Society
Volume142
Issue number695
DOIs
Publication statusPublished - 2016

Fingerprint Dive into the research topics of 'The maximum sustainable heat flux in stably stratified channel flows'. Together they form a unique fingerprint.

Cite this