The in vivo developmental toxicity of diethylstilbestrol (DES) in rat evaluated by an alternative testing strategy

Aziza Hussein Bakheit Adam*, Mengying Zhang, Laura H.J. de Haan, Bennard van Ravenzwaay, Jochem Louisse, Ivonne M.C.M. Rietjens

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

In the present study, we evaluated an alternative testing strategy to quantitatively predict the in vivo developmental toxicity of the synthetic hormone diethylstilbestrol (DES). To this end, a physiologically based kinetic (PBK) model was defined that was subsequently used to translate concentration–response data for the in vitro developmental toxicity of DES, obtained in the ES-D3 cell differentiation assay, into predicted in vivo dose–response data for developmental toxicity. The previous studies showed that the PBK model-facilitated reverse dosimetry approach is a useful approach to quantitatively predict the developmental toxicity of several developmental toxins. The results obtained in the present study show that the PBK model adequately predicted DES blood concentrations in rats. Further studies revealed that DES tested positive in the ES-D3 differentiation assay and that DES-induced inhibition of the ES-D3 cell differentiation could be counteracted by the estrogen receptor alpha (ERα) antagonist fulvestrant, indicating that the in vitro ES-D3 cell differentiation assay was able to mimic the role of ERα reported in the mode of action underlying the developmental toxicity of DES in vivo. In spite of this, combining these in vitro data with the PBK model did not adequately predict the in vivo developmental toxicity of DES in a quantitative way. It is concluded that although the EST qualifies DES as a developmental toxin and detects the role of ERα in this process, the ES-D3 cell differentiation assay of the EST apparently does not adequately capture the processes underlying DES-induced developmental toxicity in vivo.

Original languageEnglish
Pages (from-to)2021-2033
JournalArchives of Toxicology
Volume93
Issue number7
Early online date22 May 2019
DOIs
Publication statusPublished - Jul 2019

Fingerprint

Diethylstilbestrol
Toxicity
Rats
Testing
Estrogen Receptor alpha
Cell Differentiation
Assays
Kinetics
Dosimetry
Blood
Hormones

Keywords

  • Developmental toxicity
  • Diethylstilbestrol
  • Estrogen receptor alpha (ERα)
  • Physiologically based kinetic modelling
  • Reverse dosimetry

Cite this

@article{44acd087d37848dcb30c0ad38d91f1ad,
title = "The in vivo developmental toxicity of diethylstilbestrol (DES) in rat evaluated by an alternative testing strategy",
abstract = "In the present study, we evaluated an alternative testing strategy to quantitatively predict the in vivo developmental toxicity of the synthetic hormone diethylstilbestrol (DES). To this end, a physiologically based kinetic (PBK) model was defined that was subsequently used to translate concentration–response data for the in vitro developmental toxicity of DES, obtained in the ES-D3 cell differentiation assay, into predicted in vivo dose–response data for developmental toxicity. The previous studies showed that the PBK model-facilitated reverse dosimetry approach is a useful approach to quantitatively predict the developmental toxicity of several developmental toxins. The results obtained in the present study show that the PBK model adequately predicted DES blood concentrations in rats. Further studies revealed that DES tested positive in the ES-D3 differentiation assay and that DES-induced inhibition of the ES-D3 cell differentiation could be counteracted by the estrogen receptor alpha (ERα) antagonist fulvestrant, indicating that the in vitro ES-D3 cell differentiation assay was able to mimic the role of ERα reported in the mode of action underlying the developmental toxicity of DES in vivo. In spite of this, combining these in vitro data with the PBK model did not adequately predict the in vivo developmental toxicity of DES in a quantitative way. It is concluded that although the EST qualifies DES as a developmental toxin and detects the role of ERα in this process, the ES-D3 cell differentiation assay of the EST apparently does not adequately capture the processes underlying DES-induced developmental toxicity in vivo.",
keywords = "Developmental toxicity, Diethylstilbestrol, Estrogen receptor alpha (ERα), Physiologically based kinetic modelling, Reverse dosimetry",
author = "Adam, {Aziza Hussein Bakheit} and Mengying Zhang and {de Haan}, {Laura H.J.} and {van Ravenzwaay}, Bennard and Jochem Louisse and Rietjens, {Ivonne M.C.M.}",
year = "2019",
month = "7",
doi = "10.1007/s00204-019-02487-6",
language = "English",
volume = "93",
pages = "2021--2033",
journal = "Archives of Toxicology",
issn = "0340-5761",
publisher = "Springer Verlag",
number = "7",

}

TY - JOUR

T1 - The in vivo developmental toxicity of diethylstilbestrol (DES) in rat evaluated by an alternative testing strategy

AU - Adam, Aziza Hussein Bakheit

AU - Zhang, Mengying

AU - de Haan, Laura H.J.

AU - van Ravenzwaay, Bennard

AU - Louisse, Jochem

AU - Rietjens, Ivonne M.C.M.

PY - 2019/7

Y1 - 2019/7

N2 - In the present study, we evaluated an alternative testing strategy to quantitatively predict the in vivo developmental toxicity of the synthetic hormone diethylstilbestrol (DES). To this end, a physiologically based kinetic (PBK) model was defined that was subsequently used to translate concentration–response data for the in vitro developmental toxicity of DES, obtained in the ES-D3 cell differentiation assay, into predicted in vivo dose–response data for developmental toxicity. The previous studies showed that the PBK model-facilitated reverse dosimetry approach is a useful approach to quantitatively predict the developmental toxicity of several developmental toxins. The results obtained in the present study show that the PBK model adequately predicted DES blood concentrations in rats. Further studies revealed that DES tested positive in the ES-D3 differentiation assay and that DES-induced inhibition of the ES-D3 cell differentiation could be counteracted by the estrogen receptor alpha (ERα) antagonist fulvestrant, indicating that the in vitro ES-D3 cell differentiation assay was able to mimic the role of ERα reported in the mode of action underlying the developmental toxicity of DES in vivo. In spite of this, combining these in vitro data with the PBK model did not adequately predict the in vivo developmental toxicity of DES in a quantitative way. It is concluded that although the EST qualifies DES as a developmental toxin and detects the role of ERα in this process, the ES-D3 cell differentiation assay of the EST apparently does not adequately capture the processes underlying DES-induced developmental toxicity in vivo.

AB - In the present study, we evaluated an alternative testing strategy to quantitatively predict the in vivo developmental toxicity of the synthetic hormone diethylstilbestrol (DES). To this end, a physiologically based kinetic (PBK) model was defined that was subsequently used to translate concentration–response data for the in vitro developmental toxicity of DES, obtained in the ES-D3 cell differentiation assay, into predicted in vivo dose–response data for developmental toxicity. The previous studies showed that the PBK model-facilitated reverse dosimetry approach is a useful approach to quantitatively predict the developmental toxicity of several developmental toxins. The results obtained in the present study show that the PBK model adequately predicted DES blood concentrations in rats. Further studies revealed that DES tested positive in the ES-D3 differentiation assay and that DES-induced inhibition of the ES-D3 cell differentiation could be counteracted by the estrogen receptor alpha (ERα) antagonist fulvestrant, indicating that the in vitro ES-D3 cell differentiation assay was able to mimic the role of ERα reported in the mode of action underlying the developmental toxicity of DES in vivo. In spite of this, combining these in vitro data with the PBK model did not adequately predict the in vivo developmental toxicity of DES in a quantitative way. It is concluded that although the EST qualifies DES as a developmental toxin and detects the role of ERα in this process, the ES-D3 cell differentiation assay of the EST apparently does not adequately capture the processes underlying DES-induced developmental toxicity in vivo.

KW - Developmental toxicity

KW - Diethylstilbestrol

KW - Estrogen receptor alpha (ERα)

KW - Physiologically based kinetic modelling

KW - Reverse dosimetry

U2 - 10.1007/s00204-019-02487-6

DO - 10.1007/s00204-019-02487-6

M3 - Article

VL - 93

SP - 2021

EP - 2033

JO - Archives of Toxicology

JF - Archives of Toxicology

SN - 0340-5761

IS - 7

ER -