TY - JOUR
T1 - The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands
AU - Abel, Christin
AU - Horion, Stéphanie
AU - Tagesson, Torbern
AU - De Keersmaecker, Wanda
AU - Seddon, Alistair W.R.
AU - Abdi, Abdulhakim M.
AU - Fensholt, Rasmus
PY - 2021/1
Y1 - 2021/1
N2 - Global climate change is projected to lead to an increase in both the areal extent and degree of aridity in the world’s drylands. At the same time, the majority of drylands are located in developing countries where high population densities and rapid population growth place additional pressure on the ecosystem. Thus, drylands are particularly vulnerable to environmental changes and large-scale environmental degradation. However, little is known about the long-term functional response of vegetation to such changes induced by the interplay of complex human–environmental interactions. Here we use time series of satellite data to show how vegetation productivity in relation to water availability, which is a major aspect of vegetation functioning in tropical drylands, has changed over the past two decades. In total, one-third of tropical dryland ecosystems show significant (P < 0.05) changes in vegetation–rainfall sensitivity with pronounced differences between regions and continents. We identify population as the main driver of negative changes, especially for developing countries. This is contrasted by positive changes in vegetation–rainfall sensitivity in richer countries, probably resulting from favourable climatic conditions and/or caused by an intensification and expansion of human land management. Our results highlight geographic and economic differences in the relationship between vegetation–rainfall sensitivity and associated drivers in tropical drylands, marking an important step towards the identification, understanding and mitigation of potential negative effects from a changing world on ecosystems and human well-being.
AB - Global climate change is projected to lead to an increase in both the areal extent and degree of aridity in the world’s drylands. At the same time, the majority of drylands are located in developing countries where high population densities and rapid population growth place additional pressure on the ecosystem. Thus, drylands are particularly vulnerable to environmental changes and large-scale environmental degradation. However, little is known about the long-term functional response of vegetation to such changes induced by the interplay of complex human–environmental interactions. Here we use time series of satellite data to show how vegetation productivity in relation to water availability, which is a major aspect of vegetation functioning in tropical drylands, has changed over the past two decades. In total, one-third of tropical dryland ecosystems show significant (P < 0.05) changes in vegetation–rainfall sensitivity with pronounced differences between regions and continents. We identify population as the main driver of negative changes, especially for developing countries. This is contrasted by positive changes in vegetation–rainfall sensitivity in richer countries, probably resulting from favourable climatic conditions and/or caused by an intensification and expansion of human land management. Our results highlight geographic and economic differences in the relationship between vegetation–rainfall sensitivity and associated drivers in tropical drylands, marking an important step towards the identification, understanding and mitigation of potential negative effects from a changing world on ecosystems and human well-being.
U2 - 10.1038/s41893-020-00597-z
DO - 10.1038/s41893-020-00597-z
M3 - Article
AN - SCOPUS:85089756039
SN - 2398-9629
VL - 4
SP - 25
EP - 32
JO - Nature Sustainability
JF - Nature Sustainability
ER -