TY - UNPB
T1 - The Hitchhiker’s Guide to Statistical Analysis of Feature-based Molecular Networks from Non-Targeted Metabolomics Data
AU - Pakkir Shah, Abzer K.
AU - Walter, Axel
AU - Ottosson, F.
AU - Russo, Francesco
AU - Navarro-Díaz, Marcelo
AU - Boldt, Judith
AU - Kalinski, Jarmo-Charles
AU - Kontou, Eftychia E.
AU - Elofson, James
AU - Polyzois, Alexandros
AU - González-Marín, Carolina
AU - Farrell, Shane
AU - Aggerbeck, Marie Rønne
AU - Pruksatrakul, Thapanee
AU - Chan, Nathan
AU - Wang, Yunshu
AU - Pöchhacker, Magdalena
AU - Brungs, Corinna
AU - Cámara, Beatriz
AU - Caraballo-Rodríguez, Andrés Mauricio
AU - Cumsille, Andres
AU - de Oliveira, Fernanda
AU - Dührkop, Kai
AU - El Abiead, Yasin
AU - Geibel, Christian
AU - Graves, Lana G.
AU - Hansen, Martin
AU - Steffen, Heuckeroth
AU - Knoblauch, Simon
AU - Kostenko, Anastasiia
AU - Kuijpers, Mirte C.M.
AU - Mildau, K.A.
AU - Papadopoulos Lambidis, Stilianos
AU - Gomes, Paulo Wender P.
AU - Schramm, Tilman
AU - Steuer-Lodd, Karoline
AU - Stincone, Paolo
AU - Tayyab, Sibgha
AU - Vitale, Giovanni Andrea
AU - Wagner, Berenike C.
AU - Xing, Shipei
AU - Yazzie, Marquis T.
AU - Zuffa, Simone
AU - de Kruijff, Martinus
AU - Beemelmanns, Christine
AU - Link, Hannes
AU - Mayer, Christoph
AU - van der Hooft, J.J.J.
AU - Damiani, Tito
AU - Pluskal, Tomáš
AU - Dorrestein, Pieter C.
AU - Stanstrup, Jan
AU - Schmid, Robin
AU - Wang, Mingxun
AU - Aron, Allegra T.
AU - Ernst, Madeleine
AU - Petras, Daniel
PY - 2023/11/1
Y1 - 2023/11/1
N2 - Feature-Based Molecular Networking (FBMN) is a popular analysis approach for LC-MS/MS-based non-targeted metabolomics data. While processing LC-MS/MS data through FBMN is fairly streamlined, downstream data handling and statistical interrogation is often a key bottleneck. Especially, users new to statistical analysis struggle to effectively handle and analyze complex data matrices. In this protocol, we provide a comprehensive guide for the statistical analysis of FBMN results. We explain the data structure and principles of data clean-up and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. Additionally, the protocol is accompanied by a web application with a graphical user interface (https://fbmn-statsguide.gnps2.org/), to lower the barrier of entry for new users. Together, the protocol, code, and web app provide a complete guide and toolbox for FBMN data integration, clean-up, and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking (GNPS and GNPS2) and can be adapted to other MS feature detection, annotation, and networking tools.
AB - Feature-Based Molecular Networking (FBMN) is a popular analysis approach for LC-MS/MS-based non-targeted metabolomics data. While processing LC-MS/MS data through FBMN is fairly streamlined, downstream data handling and statistical interrogation is often a key bottleneck. Especially, users new to statistical analysis struggle to effectively handle and analyze complex data matrices. In this protocol, we provide a comprehensive guide for the statistical analysis of FBMN results. We explain the data structure and principles of data clean-up and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. Additionally, the protocol is accompanied by a web application with a graphical user interface (https://fbmn-statsguide.gnps2.org/), to lower the barrier of entry for new users. Together, the protocol, code, and web app provide a complete guide and toolbox for FBMN data integration, clean-up, and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking (GNPS and GNPS2) and can be adapted to other MS feature detection, annotation, and networking tools.
U2 - 10.26434/chemrxiv-2023-wwbt0
DO - 10.26434/chemrxiv-2023-wwbt0
M3 - Preprint
BT - The Hitchhiker’s Guide to Statistical Analysis of Feature-based Molecular Networks from Non-Targeted Metabolomics Data
PB - ChemRxiv
ER -