The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni

M. Wosten, J.A. Wagenaar, J.P.M. van Putten

    Research output: Contribution to journalArticleAcademicpeer-review

    116 Citations (Scopus)

    Abstract

    The human pathogen Campylobacter jejuni is a highly motile organism that carries a flagellum on each pole. The flagellar motility is regarded as an important trait in C. jejuni colonization of the intestinal tract, however, the knowledge of the regulation of this important colonization factor is rudimentary. We demonstrate by phosphorylation assays that the sensor FlgS and the response regulator FlgR form a two-component system that is on the top of the Campylobacter flagellum hierarchy. Phosphorylated FlgR is needed to activate RpoN-dependent genes of which the products form the hook-basal body filament complex. By real-time reverse transcriptase-PCR we identified that FlgS, FlgR, RpoN, and FliA belong to the early flagellar genes and are regulated by 70. FliD and the putative anti--factor FlgM are regulated by a 54- and 28-dependent promoters. Activation of the fla regulon is growth phase-dependent, a 100-fold rpoN mRNA reduction is seen in the early stationary phase compared with the early logarithmic phase. Whereas flaB transcription decreases, flaA transcription increases in early stationary phase. Our data show that the C. jejuni flagellar hierarchy largely differs from that of other bacteria. Phenotypical analysis revealed that unflagellated C. jejuni mutants grow three times faster in broth medium compared with wild-type bacteria. In vivo the C. jejuni flagella are needed to pass the gastrointestinal tract of chickens, but not to colonize the ceaca of the chicken.
    Original languageEnglish
    Pages (from-to)16214-16222
    JournalJournal of Biological Chemistry
    Volume279
    Issue number16
    DOIs
    Publication statusPublished - 2004

    Keywords

    • pseudomonas-aeruginosa
    • helicobacter-pylori
    • functional-characterization
    • molecular characterization
    • salmonella-typhimurium
    • transposon mutagenesis
    • flagellin expression
    • viscous environment
    • housekeeping genes
    • escherichia-coli

    Fingerprint

    Dive into the research topics of 'The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni'. Together they form a unique fingerprint.

    Cite this