TY - JOUR
T1 - The effect of two endogeic earthworm species on zinc distribution and availability in artificial soil columns
AU - Zorn, M.I.
AU - van Gestel, C.A.M.
AU - Eijsackers, H.J.P.
N1 - 000228242300012
PY - 2005
Y1 - 2005
N2 - The objective of this study was to determine the impact of earthworm bioturbation on the distribution and availability of zinc in the soil profile. Experiments were carried out with Allolobophora chlorotica and Aporrectodea caliginosa in 24 perspex columns (0 10 cm), filled with 20-23 cm non-polluted soil (OM 2%, clay 2.9%, pH 0.01 M CaCl2 6.4), that was covered by a 3-5 cm layer of aged zinc spiked soil (500 mg Zn/kg dry soil) and another 2 cm non-polluted soil on top. After 80 and 175 days, columns were sacrificed and each cm from the top down to a depth of 15 cm was sampled. Earthworm casts, placed on top of the soil, were collected. Each sample was analyzed for total and CaCl2-exchangeable zinc concentrations. Effects of earthworm bioturbation were most pronounced after 1,75 days. For A. chlorotica, total and CaCl2-exchangeable zinc concentrations in the polluted layers were lower with than without earthworms. Total zinc concentrations in the non-polluted layers were higher in columns with earthworms. Casts of A. chlorotica collected on the soil surface showed slightly higher total zinc concentrations than non-polluted soil. Casts were found throughout the whole column. For A. caliginosa there were no differences in total zinc concentration between columns with and without earthworms. CaCl2-exchangeable zinc concentrations in the polluted layers were lower for columns with earthworms. Casts were mainly placed on top of the soil and contained total zinc concentrations intermediate between those in non-polluted and polluted soil layers. This study shows that different endogeic earthworm species have different effects on zinc distribution and availability in soils. A. chlorotica transfers soil throughout the whole column, effectively mixing it, while A. caliginosa decreases metal availability and transfers polluted soil to the soil surface. (c) 2004 Elsevier Ltd. All rights reserved.
AB - The objective of this study was to determine the impact of earthworm bioturbation on the distribution and availability of zinc in the soil profile. Experiments were carried out with Allolobophora chlorotica and Aporrectodea caliginosa in 24 perspex columns (0 10 cm), filled with 20-23 cm non-polluted soil (OM 2%, clay 2.9%, pH 0.01 M CaCl2 6.4), that was covered by a 3-5 cm layer of aged zinc spiked soil (500 mg Zn/kg dry soil) and another 2 cm non-polluted soil on top. After 80 and 175 days, columns were sacrificed and each cm from the top down to a depth of 15 cm was sampled. Earthworm casts, placed on top of the soil, were collected. Each sample was analyzed for total and CaCl2-exchangeable zinc concentrations. Effects of earthworm bioturbation were most pronounced after 1,75 days. For A. chlorotica, total and CaCl2-exchangeable zinc concentrations in the polluted layers were lower with than without earthworms. Total zinc concentrations in the non-polluted layers were higher in columns with earthworms. Casts of A. chlorotica collected on the soil surface showed slightly higher total zinc concentrations than non-polluted soil. Casts were found throughout the whole column. For A. caliginosa there were no differences in total zinc concentration between columns with and without earthworms. CaCl2-exchangeable zinc concentrations in the polluted layers were lower for columns with earthworms. Casts were mainly placed on top of the soil and contained total zinc concentrations intermediate between those in non-polluted and polluted soil layers. This study shows that different endogeic earthworm species have different effects on zinc distribution and availability in soils. A. chlorotica transfers soil throughout the whole column, effectively mixing it, while A. caliginosa decreases metal availability and transfers polluted soil to the soil surface. (c) 2004 Elsevier Ltd. All rights reserved.
KW - bioturbation
KW - sites
U2 - 10.1016/j.soilbio.2004.10.012
DO - 10.1016/j.soilbio.2004.10.012
M3 - Article
SN - 0038-0717
VL - 37
SP - 917
EP - 925
JO - Soil Biology and Biochemistry
JF - Soil Biology and Biochemistry
IS - 5
ER -