TY - JOUR
T1 - The effect of cognitive load on preference and intensity processing of sweet taste in the brain
AU - van Meer, Floor
AU - van Steenbergen, Henk
AU - van Dillen, Lotte F.
PY - 2023/9/1
Y1 - 2023/9/1
N2 - Distracted eating can cause overconsumption. Whereas previous work has shown that cognitive load suppresses perceived taste intensity and increases subsequent consumption, the mechanism behind distraction-induced overconsumption remains unclear. To elucidate this, we performed two event-related fMRI experiments that examined how cognitive load affects neural responses and perceived intensity and preferred intensity, respectively, to solutions varying in sweetness. In Experiment 1 (N = 24), participants tasted weak sweet and strong sweet glucose solutions and rated their intensity while we concurrently varied cognitive load using a digit-span task. In Experiment 2 (N = 22), participants tasted five different glucose concentrations under varying cognitive load and then indicated whether they wanted to keep, decrease or increase its sweetness. Participants in Experiment 1 rated strong sweet solutions as less sweet under high compared to low cognitive load, which was accompanied by attenuated activation the right middle insula and bilateral DLPFC. Psychophysiological interaction analyses showed that cognitive load moreover altered connectivity between the middle insula and nucleus accumbens and DLPFC and middle insula while tasting strong sweet solutions. In Experiment 2, cognitive load did not affect participants’ preferred sweetness intensity. fMRI results revealed that cognitive load attenuated DLPFC activation for the strongest sweet solutions in the study. In conclusion, our behavioral and neuroimaging results suggest that cognitive load dampens the sensory processing of strong sweet solutions in particular, which may indicate higher competition for attentional resources for strong sweet than weak sweet solutions under high cognitive load. Implications for future research are discussed.
AB - Distracted eating can cause overconsumption. Whereas previous work has shown that cognitive load suppresses perceived taste intensity and increases subsequent consumption, the mechanism behind distraction-induced overconsumption remains unclear. To elucidate this, we performed two event-related fMRI experiments that examined how cognitive load affects neural responses and perceived intensity and preferred intensity, respectively, to solutions varying in sweetness. In Experiment 1 (N = 24), participants tasted weak sweet and strong sweet glucose solutions and rated their intensity while we concurrently varied cognitive load using a digit-span task. In Experiment 2 (N = 22), participants tasted five different glucose concentrations under varying cognitive load and then indicated whether they wanted to keep, decrease or increase its sweetness. Participants in Experiment 1 rated strong sweet solutions as less sweet under high compared to low cognitive load, which was accompanied by attenuated activation the right middle insula and bilateral DLPFC. Psychophysiological interaction analyses showed that cognitive load moreover altered connectivity between the middle insula and nucleus accumbens and DLPFC and middle insula while tasting strong sweet solutions. In Experiment 2, cognitive load did not affect participants’ preferred sweetness intensity. fMRI results revealed that cognitive load attenuated DLPFC activation for the strongest sweet solutions in the study. In conclusion, our behavioral and neuroimaging results suggest that cognitive load dampens the sensory processing of strong sweet solutions in particular, which may indicate higher competition for attentional resources for strong sweet than weak sweet solutions under high cognitive load. Implications for future research are discussed.
KW - Cognitive load
KW - fMRI
KW - Sweet taste
KW - Taste
U2 - 10.1016/j.appet.2023.106630
DO - 10.1016/j.appet.2023.106630
M3 - Article
C2 - 37302413
AN - SCOPUS:85162133820
SN - 0195-6663
VL - 188
JO - Appetite
JF - Appetite
M1 - 106630
ER -