The Design and Development of a Personalized Leisure Time Physical Activity Application Based on Behavior Change Theories, End-User Perceptions, and Principles From Empirical Data Mining

Karlijn Sporrel*, Rémi D.D. De Boer, Shihan Wang, Nicky Nibbeling, Monique Simons, Marije Deutekom, Dick Ettema, Paula C. Castro, Victor Zuniga Dourado, Ben Kröse

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

23 Citations (Scopus)

Abstract

Introduction: Many adults do not reach the recommended physical activity (PA) guidelines, which can lead to serious health problems. A promising method to increase PA is the use of smartphone PA applications. However, despite the development and evaluation of multiple PA apps, it remains unclear how to develop and design engaging and effective PA apps. Furthermore, little is known on ways to harness the potential of artificial intelligence for developing personalized apps. In this paper, we describe the design and development of the Playful data-driven Active Urban Living (PAUL): a personalized PA application. Methods: The two-phased development process of the PAUL apps rests on principles from the behavior change model; the Integrate, Design, Assess, and Share (IDEAS) framework; and the behavioral intervention technology (BIT) model. During the first phase, we explored whether location-specific information on performing PA in the built environment is an enhancement to a PA app. During the second phase, the other modules of the app were developed. To this end, we first build the theoretical foundation for the PAUL intervention by performing a literature study. Next, a focus group study was performed to translate the theoretical foundations and the needs and wishes in a set of user requirements. Since the participants indicated the need for reminders at a for-them-relevant moment, we developed a self-learning module for the timing of the reminders. To initialize this module, a data-mining study was performed with historical running data to determine good situations for running. Results: The results of these studies informed the design of a personalized mobile health (mHealth) application for running, walking, and performing strength exercises. The app is implemented as a set of modules based on the persuasive strategies “monitoring of behavior,” “feedback,” “goal setting,” “reminders,” “rewards,” and “providing instruction.” An architecture was set up consisting of a smartphone app for the user, a back-end server for storage and adaptivity, and a research portal to provide access to the research team. Conclusions: The interdisciplinary research encompassing psychology, human movement sciences, computer science, and artificial intelligence has led to a theoretically and empirically driven leisure time PA application. In the current phase, the feasibility of the PAUL app is being assessed.

Original languageEnglish
Article number528472
Pages (from-to)1-19
Number of pages19
JournalFrontiers in Public Health
Volume8
DOIs
Publication statusPublished - 2 Feb 2021

Keywords

  • behavior change
  • behavior intervention design
  • data-mining
  • just-in-time adaptive interventions
  • mHealth
  • Persuasive Technology
  • physical activity
  • reinforcement learning

Fingerprint

Dive into the research topics of 'The Design and Development of a Personalized Leisure Time Physical Activity Application Based on Behavior Change Theories, End-User Perceptions, and Principles From Empirical Data Mining'. Together they form a unique fingerprint.

Cite this