The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation

W.J. Van Egmond, M. Saakes, S. Porada, T. Meuwissen, C.J.N. Buisman, H.V.M. Hamelers

Research output: Contribution to journalArticleAcademicpeer-review

49 Citations (Scopus)


Unlike traditional fossil fuel plants, the wind and the sun provide power only when the renewable resource is available. To accommodate large scale use of renewable energy sources for efficient power production and utilization, energy storage systems are necessary. Here, we introduce a scalable energy storage system which operates by performing cycles during which energy generated from renewable resource is first used to produce highly concentrated brine and diluate, followed up mixing these two solutions in order to generate power. In this work, we present theoretical results of the attainable energy density as function of salt type and concentration. A linearized Nernst-Planck model is used to describe water, salt and charge transport. We validate our model with experiments over wide range of sodium chloride concentrations (0.025-3 m) and current densities (-49 to +33 A m-2). We find that depending on current density, charge and discharge steps have significantly different thermodynamic efficiency. In addition, we show that at optimal current densities, mechanisms of energy dissipation change with salt concentration. We find the highest thermodynamic efficiency at low concentrate concentrations. When using salt concentrations above 1 m, water and co-ion transport contribute to high energy dissipation due to irreversible mixing.

Original languageEnglish
Pages (from-to)129-139
JournalJournal of Power Sources
Publication statusPublished - 2016


  • Aqueous based battery
  • Flow batteries
  • Ion-exchange membranes
  • Large scale electricity energy storage
  • Reverse electrodialysis
  • Salinity gradient energy


Dive into the research topics of 'The concentration gradient flow battery as electricity storage system: Technology potential and energy dissipation'. Together they form a unique fingerprint.

Cite this