TY - JOUR
T1 - Technology to Automatically Record Eating Behavior in Real Life: A Systematic Review
AU - Hiraguchi, Haruka
AU - Perone, Paola
AU - Toet, Alexander
AU - Camps, Guido
AU - Brouwer, Anne-Marie
PY - 2023/9/8
Y1 - 2023/9/8
N2 - To monitor adherence to diets and to design and evaluate nutritional interventions, it is essential to obtain objective knowledge about eating behavior. In most research, measures of eating behavior are based on self-reporting, such as 24-h recalls, food records (food diaries) and food frequency questionnaires. Self-reporting is prone to inaccuracies due to inaccurate and subjective recall and other biases. Recording behavior using nonobtrusive technology in daily life would overcome this. Here, we provide an up-to-date systematic overview encompassing all (close-to) publicly or commercially available technologies to automatically record eating behavior in real-life settings. A total of 1328 studies were screened and, after applying defined inclusion and exclusion criteria, 122 studies were included for in-depth evaluation. Technologies in these studies were categorized by what type of eating behavior they measure and which type of sensor technology they use. In general, we found that relatively simple sensors are often used. Depending on the purpose, these are mainly motion sensors, microphones, weight sensors and photo cameras. While several of these technologies are commercially available, there is still a lack of publicly available algorithms that are needed to process and interpret the resulting data. We argue that future work should focus on developing robust algorithms and validating these technologies in real-life settings. Combining technologies (e.g., prompting individuals for self-reports at sensed, opportune moments) is a promising route toward ecologically valid studies of eating behavior.
AB - To monitor adherence to diets and to design and evaluate nutritional interventions, it is essential to obtain objective knowledge about eating behavior. In most research, measures of eating behavior are based on self-reporting, such as 24-h recalls, food records (food diaries) and food frequency questionnaires. Self-reporting is prone to inaccuracies due to inaccurate and subjective recall and other biases. Recording behavior using nonobtrusive technology in daily life would overcome this. Here, we provide an up-to-date systematic overview encompassing all (close-to) publicly or commercially available technologies to automatically record eating behavior in real-life settings. A total of 1328 studies were screened and, after applying defined inclusion and exclusion criteria, 122 studies were included for in-depth evaluation. Technologies in these studies were categorized by what type of eating behavior they measure and which type of sensor technology they use. In general, we found that relatively simple sensors are often used. Depending on the purpose, these are mainly motion sensors, microphones, weight sensors and photo cameras. While several of these technologies are commercially available, there is still a lack of publicly available algorithms that are needed to process and interpret the resulting data. We argue that future work should focus on developing robust algorithms and validating these technologies in real-life settings. Combining technologies (e.g., prompting individuals for self-reports at sensed, opportune moments) is a promising route toward ecologically valid studies of eating behavior.
U2 - 10.3390/s23187757
DO - 10.3390/s23187757
M3 - Article
SN - 1424-8220
VL - 23
JO - Sensors
JF - Sensors
IS - 18
M1 - 7757
ER -