TY - JOUR
T1 - Systemic change in the Rhine-Meuse basin
T2 - Quantifying and explaining parameters trends in the PCR-GLOBWB global hydrological model
AU - Ruijsch, Jessica
AU - Verstegen, Judith A.
AU - Sutanudjaja, Edwin H.
AU - Karssenberg, Derek
N1 - Publisher Copyright:
© 2021
PY - 2021/9
Y1 - 2021/9
N2 - In hydrological modelling, traditionally one calibration was performed over a certain calibration period before the model is used to study the hydrological system. This implies that a constant model structure and parameterization are assumed. However, if the catchment system is subject to changes that are not incorporated in the model, the parameter values found in a calibration period may not be optimal for other periods, which is called systemic change. The aim of this study was to identify systemic change and its possible causes with the PCR-GLOBWB hydrological model in the Rhine-Meuse basin, by performing a brute-force calibration for multiple periods for five calibration locations between 1901-2010. Systemic change was studied for the main model components, by selecting a key parameter from each component (minimum soil depth fraction, saturated hydraulic conductivity, groundwater recession coefficient, degree day factor, Manning's n). These parameters were calibrated for 10-year rolling periods between 1901-2010. The results showed that at the downstream locations, the changes in optimal parameter values were small, while at the upstream locations, the optimal values of most parameters changed considerably over the different rolling calibration periods, signifying systemic change. Especially the degree day factor showed large variations, varying over time between 0.5 and 2.5 times its default value at Basel and Maxau (upstream and middle part of the Rhine basin). Based on correlation analysis, it was found that climate change as well as changes in land use and river structure are possible causes of changes in optimal parameter values through time.
AB - In hydrological modelling, traditionally one calibration was performed over a certain calibration period before the model is used to study the hydrological system. This implies that a constant model structure and parameterization are assumed. However, if the catchment system is subject to changes that are not incorporated in the model, the parameter values found in a calibration period may not be optimal for other periods, which is called systemic change. The aim of this study was to identify systemic change and its possible causes with the PCR-GLOBWB hydrological model in the Rhine-Meuse basin, by performing a brute-force calibration for multiple periods for five calibration locations between 1901-2010. Systemic change was studied for the main model components, by selecting a key parameter from each component (minimum soil depth fraction, saturated hydraulic conductivity, groundwater recession coefficient, degree day factor, Manning's n). These parameters were calibrated for 10-year rolling periods between 1901-2010. The results showed that at the downstream locations, the changes in optimal parameter values were small, while at the upstream locations, the optimal values of most parameters changed considerably over the different rolling calibration periods, signifying systemic change. Especially the degree day factor showed large variations, varying over time between 0.5 and 2.5 times its default value at Basel and Maxau (upstream and middle part of the Rhine basin). Based on correlation analysis, it was found that climate change as well as changes in land use and river structure are possible causes of changes in optimal parameter values through time.
KW - Hydrological modelling
KW - Parameter stability
KW - PCR-GLOBWB model
KW - Rhine-Meuse basin
KW - Systemic change
U2 - 10.1016/j.advwatres.2021.104013
DO - 10.1016/j.advwatres.2021.104013
M3 - Article
AN - SCOPUS:85111971804
SN - 0309-1708
VL - 155
JO - Advances in Water Resources
JF - Advances in Water Resources
M1 - 104013
ER -