Systemic and mucosal isotype-specific antibody responses in pigs to experimental influenza virus infection

P.P. Heinen, A.P. van Nieuwstadt, J.M.A. Pol, E.A. de Boer-Luijtze, J.T. van Oirschot, A.T.J. Bianchi

    Research output: Contribution to journalArticleAcademicpeer-review

    25 Citations (Scopus)

    Abstract

    The immunoglobulin isotype-specific responses in serum and at the respiratory mucosa of pigs after a primary infection with influenza virus were studied. To do this, we developed an aerosol challenge model for influenza in specified pathogen-free (SPF) pigs and isotype-specific enzyme-linked immunosorbent assays (ELISAs). Ten-week-old pigs were inoculated without anesthesia in the nostrils with an aerosol of the field isolate influenza A/swine/Neth/St. Oedenrode/96 (H3N2). The infection caused acute respiratory disease that closely resembled the disease observed in some outbreaks of influenza among finishing pigs, which were not complicated by bacterial infections. Pigs showed clinical signs characterized by fever, dyspnea, and anorexia. At necropsy on postinfection days 1 and 2, an exudative endobronchitis was observed throughout the lung. Viral antigen was present in the epithelial cells of the bronchi and bronchioli and virus was isolated from bronchioalveolar and nasal lavage fluids and from pharyngeal swabs until 5 days after infection. With the isotype-specific ELISAs, viral nucleoprotein specific immunoglobulin (Ig) M, IgG1, and IgA antibody responses were measured in serum and bronchioalveolar and nasal lavage fluids. To determine whether the antibodies were produced and secreted at the respiratory mucosa or were serum-derived, the specific activity (ie, the ratio of antibody titer to Ig concentration) was calculated for each isotype. The IgA and interestingly also a substantial part of the IgG1 antibody response in pigs upon infection with influenza virus was shown to be a mucosal response. Local production of specific IgA in the nasal mucosa, and of specific IgA and IgG1 in the lung was demonstrated. These results indicate that protective efficacy of vaccination can be improved by an immunization procedure that preferentially stimulates a mucosal immune response. The aerosol challenge model in SPF pigs and the isotype-specific ELISAs that we developed can be useful for evaluating various strategies to improve efficacy of porcine influenza vaccines and to study the immune mechanisms underlying the observed protection.
    Original languageEnglish
    Pages (from-to)237-247
    JournalViral Immunology
    Volume13
    Issue number2
    DOIs
    Publication statusPublished - 2000

    Fingerprint Dive into the research topics of 'Systemic and mucosal isotype-specific antibody responses in pigs to experimental influenza virus infection'. Together they form a unique fingerprint.

    Cite this