Abstract
Jasmonic acid (JA) plays a central role in induced plant defence e.g. by regulating the biosynthesis of herbivore-induced plant volatiles that mediate the attraction of natural enemies of herbivores. Moreover, exogenous application of JA can be used to elicit plant defence responses similar to those induced by biting-chewing herbivores and mites that pierce cells and consume their contents. In the present study, we used Lima bean (Phaseolus lunatus) plants to explore how application of a low dose of JA followed by minor herbivory by spider mites (Tetranychus urticae) affects transcript levels of P. lunatus (E)-ß-ocimene synthase (PlOS), emission of (E)-ß-ocimene and nine other plant volatiles commonly associated with herbivory. Furthermore, we investigated the plant’s phytohormonal response. Application of a low dose of JA increased PlOS transcript levels in a synergistic manner when followed by minor herbivory for both simultaneous and sequential infestation. Emission of (E)-ß-ocimene was also increased, and only JA, but not SA, levels were affected by treatments. Projection to latent structures-discriminant analysis (PLS-DA) of other volatiles showed overlap between treatments. Thus, a low-dose JA application results in a synergistic effect on gene transcription and an increased emission of a volatile compound involved in indirect defence after herbivore infestation.
Original language | English |
---|---|
Pages (from-to) | 4821-4831 |
Journal | Journal of Experimental Botany |
Volume | 65 |
Issue number | 17 |
DOIs | |
Publication status | Published - 2014 |
Keywords
- induced resistance
- arabidopsis-thaliana
- brassica-oleracea
- phytoseiulus-persimilis
- attract parasitoids
- signaling pathway
- methyl salicylate
- predatory mite
- corn plants
- host-plant