TY - JOUR
T1 - SWAP 50 years
T2 - Advances in modelling soil-water-atmosphere-plant interactions
AU - Heinen, Marius
AU - Mulder, Martin
AU - van Dam, Jos
AU - Bartholomeus, Ruud
AU - de Jong van Lier, Quirijn
AU - de Wit, Janine
AU - de Wit, Allard
AU - Hack - ten Broeke, Mirjam
PY - 2024/6/1
Y1 - 2024/6/1
N2 - This paper highlights the evolution and impact of the SWAP model (Soil – Water – Atmosphere – Plant), which was initiated by R.A. Feddes and colleagues fifty years ago, in 1974. Since then, the SWAP model has played a crucial role in the advancement of agrohydrology. This paper highlights some major advances that have been made, especially focussing on the last fifteen years. The domain of the SWAP model deals with the simulation of the soil water balance in both unsaturated and saturated conditions. The model solves the Richards equation using the water retention and hydraulic conductivity functions as described by the Van Genuchten – Mualem equations. Bimodal extensions of the Van Genuchten - Mualem relationships have been implemented, as well as modifications near saturation and addressing hysteresis. An important sink term in the Richards equation is root water uptake. Crop development plays an important role in a robust simulation of root water uptake. That is why a link has been made with the dynamic crop growth model WOFOST. Instead of using a prescribed crop development, a distinction between potential and actual crop development is calculated by reducing the potential photosynthesis as a result of water or oxygen stress. Since the early days of SWAP, empirical and macroscopic concepts have been used to simulate root water uptake. Recently two process-based concepts of root water uptake and oxygen stress have also been implemented. Another important sink-source term in the Richards equation is the interaction with artificial drains. In SWAP, drainage can be simulated by either using prescribed or simulated drain heads and simulation of controlled drainage with subirrigation is possible. Finally, we briefly elaborate on three studies using SWAP: water stresses in agriculture in the Netherlands, regional water productivity in China, and controlled drainage with subirrigation. We finish discussing promising developments for the near future.
AB - This paper highlights the evolution and impact of the SWAP model (Soil – Water – Atmosphere – Plant), which was initiated by R.A. Feddes and colleagues fifty years ago, in 1974. Since then, the SWAP model has played a crucial role in the advancement of agrohydrology. This paper highlights some major advances that have been made, especially focussing on the last fifteen years. The domain of the SWAP model deals with the simulation of the soil water balance in both unsaturated and saturated conditions. The model solves the Richards equation using the water retention and hydraulic conductivity functions as described by the Van Genuchten – Mualem equations. Bimodal extensions of the Van Genuchten - Mualem relationships have been implemented, as well as modifications near saturation and addressing hysteresis. An important sink term in the Richards equation is root water uptake. Crop development plays an important role in a robust simulation of root water uptake. That is why a link has been made with the dynamic crop growth model WOFOST. Instead of using a prescribed crop development, a distinction between potential and actual crop development is calculated by reducing the potential photosynthesis as a result of water or oxygen stress. Since the early days of SWAP, empirical and macroscopic concepts have been used to simulate root water uptake. Recently two process-based concepts of root water uptake and oxygen stress have also been implemented. Another important sink-source term in the Richards equation is the interaction with artificial drains. In SWAP, drainage can be simulated by either using prescribed or simulated drain heads and simulation of controlled drainage with subirrigation is possible. Finally, we briefly elaborate on three studies using SWAP: water stresses in agriculture in the Netherlands, regional water productivity in China, and controlled drainage with subirrigation. We finish discussing promising developments for the near future.
KW - Crop growth
KW - Drought stress
KW - Hydraulic properties
KW - Oxygen stress
KW - Root water uptake
KW - Soil water balance
U2 - 10.1016/j.agwat.2024.108883
DO - 10.1016/j.agwat.2024.108883
M3 - Article
AN - SCOPUS:85193039890
SN - 0378-3774
VL - 298
JO - Agricultural Water Management
JF - Agricultural Water Management
M1 - 108883
ER -