Supramolecular virus-like particles by co-assembly of triblock polypolypeptide and PAMAM dendrimers

Wenjuan Zhou, Lei Liu, Jianan Huang, Ying Cai, Martien A. Cohen Stuart, Renko De Vries, Junyou Wang*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

Virus-like particles are of special interest as functional delivery vehicles in a variety of fields ranging from nanomedicine to materials science. Controlled formation of virus-like particles relies on manipulating the assembly of the viral coat proteins. Herein, we report a new assembly system based on a triblock polypolypeptide C4-S10-BK12 and -COONa terminated PAMAM dendrimers. The polypolypeptide has a cationic BK12 block with 12 lysines; its binding with anionic PAMAM triggers the folding of the peptide's middle silk-like block and leads to formation of virus-like nanorods, stabilized against aggregation by the long hydrophilic "C"block of the polypeptide. Varying the dendrimer/polypeptide mixing ratio hardly influences the structure and size of the nanorod. However, increasing the dendrimer generation, that is, increasing the dendrimer size results in increased particle length and height, without affecting the width of the nanorod. The branched structure and well-defined size of the dendrimers allows delicate control of the particle size; it is impossible to achieve similar control over assembly of the polypeptide with linear polyelectrolyte as template. In conclusion, we report a novel protein assembling system with properties resembling a viral coat; the findings may therefore be helpful for designing functional virus-like particles like vaccines.

Original languageEnglish
Pages (from-to)5044-5049
Number of pages6
JournalSoft Matter
Volume17
Issue number19
Early online date26 Apr 2021
DOIs
Publication statusPublished - 2021

Fingerprint

Dive into the research topics of 'Supramolecular virus-like particles by co-assembly of triblock polypolypeptide and PAMAM dendrimers'. Together they form a unique fingerprint.

Cite this