Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. - a novel lineage of Deltaproteobacteria from hypersaline soda lakes

D.Y. Sorokin, T.P. Tourova, A.M. Henstra, A.J.M. Stams, E.A. Galinski, G. Muyzer

Research output: Contribution to journalArticleAcademicpeer-review

51 Citations (Scopus)

Abstract

High rates of sulfidogenesis were observed in sediments from hypersaline soda lakes. Anaerobic enrichment cultures at 2 M Na(+) and pH 10 inoculated with sediment samples from these lakes produced sulfide most actively with sulfite and thiosulfate as electron acceptors, and resulted in the isolation of three pure cultures of extremely natronophilic sulfidogenic bacteria. Strain ASO3-1 was isolated using sulfite as a sole substrate, strain AHT 8 with thiosulfate and formate, and strain AHT 6 with thiosulfate and acetate. All strains grew in a mineral soda-based medium by dismutation of either sulfite or thiosulfate, as well as with sulfite, thiosulfate and sulfate as acceptors, and H(2) and simple organic compounds as electron donors. The acetyl-CoA pathway was identified as the pathway for inorganic carbon assimilation by strain ASO3-1. All strains were obligately alkaliphilic, with an optimum at pH 9.5-10, and grew in soda brines containing 1-4 M total Na(+) (optimum at 1.0-2.0 M). The cells accumulated high amounts of the organic osmolyte glycine betaine. They formed a new lineage within the family Desulfohalobiaceae (Deltaproteobacteria), for which the name Desulfonatronospira gen. nov. is proposed. Strains ASO3-1(T) and AHT 8 from Kulunda Steppe formed Desulfonatronospira thiodismutans sp. nov., and strain AHT 6(T) from Wadi al Natrun is suggested as Desulfonatronospira delicata sp. nov
Original languageEnglish
Pages (from-to)1444-1453
JournalMicrobiology
Volume154
Issue numberPt 5
DOIs
Publication statusPublished - 2008

Keywords

  • sulfate-reducing bacterium
  • inorganic sulfur-compounds
  • deoxyribonucleic acid
  • disproportionation
  • california
  • reduction
  • diversity
  • sediments
  • pathways
  • growth

Fingerprint Dive into the research topics of 'Sulfidogenesis under extremely haloalkaline conditions by Desulfonatronospira thiodismutans gen. nov., sp. nov., and Desulfonatronospira delicata sp. nov. - a novel lineage of Deltaproteobacteria from hypersaline soda lakes'. Together they form a unique fingerprint.

Cite this