Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus Ceriporiopsis subvermispora

Gijs Van Erven, Jianli Wang, Peicheng Sun, Pieter De Waard, Jacinta Van Der Putten, Guus E. Frissen, Richard J.A. Gosselink, Grigory Zinovyev, Antje Potthast, Willem J.H. Van Berkel, Mirjam A. Kabel*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

2 Citations (Scopus)


The white-rot fungus Ceriporiopsis subvermispora delignifies plant biomass extensively and selectively and, therefore, has great biotechnological potential. We previously demonstrated that after 7 weeks of fungal growth on wheat straw 70% w/w of lignin was removed and established the underlying degradation mechanisms via selectively extracted diagnostic substructures. In this work, we fractionated the residual (more intact) lignin and comprehensively characterized the obtained isolates to determine the susceptibility of wheat straw lignin's structural motifs to fungal degradation. Using 13C IS pyrolysis gas chromatography-mass spectrometry (py-GC-MS), heteronuclear single quantum coherence (HSQC) and 31P NMR spectroscopy, and size-exclusion chromatography (SEC) analyses, it was shown that β-O-4′ ethers and the more condensed phenylcoumarans and resinols were equally susceptible to fungal breakdown. Interestingly, for β-O-4′ ether substructures, marked cleavage preferences could be observed: β-O-4′-syringyl substructures were degraded more frequently than their β-O-4′-guaiacyl and β-O-4′-tricin analogues. Furthermore, diastereochemistry (threo > erythro) and γ-acylation (γ-OH > γ-acyl) influenced cleavage susceptibility. These results indicate that electron density of the 4′-O-coupled ring and local steric hindrance are important determinants of oxidative β-O-4′ ether degradation. Our findings provide novel insight into the delignification mechanisms of C. subvermispora and contribute to improving the valorization of lignocellulosic biomass.

Original languageEnglish
Pages (from-to)20032-20042
JournalACS Sustainable Chemistry and Engineering
Issue number24
Publication statusPublished - 5 Nov 2019


  • biological pretreatment
  • lignin quantification
  • ligninolysis
  • NMR spectroscopy
  • oxidation
  • selective delignification
  • single-electron transfer
  • stereoselectivity

Fingerprint Dive into the research topics of 'Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus Ceriporiopsis subvermispora'. Together they form a unique fingerprint.

  • Cite this