TY - JOUR
T1 - Strategies to compensate for undesired gritty sensations in foods
AU - Santagiuliana, Marco
AU - Broers, Layla
AU - Marigómez, Inés Sampedro
AU - Stieger, Markus
AU - Piqueras-Fiszman, Betina
AU - Scholten, Elke
PY - 2020/4/1
Y1 - 2020/4/1
N2 - This study investigated whether the addition of macroparticles or fat can be used to compensate for negative texture sensations in quark. Cellulose beads were added as model microparticles (1.5% w/w; average size: 263 µm) to quark (0% fat) to induce unpleasant gritty sensations. The addition of microparticles to quark significantly increased grittiness and dryness, while creaminess and liking decreased. Three strategies were explored to reduce the impact of unpleasant gritty sensations on consumer perception: two strategies involved the addition of macroparticles (granola or peach gel pieces); the third one consisted of increasing the fat content of the quark (4.4 and 8.8% w/w). For all three strategies, grittiness caused by microparticles did not significantly decrease when macroparticles or fat were present. Addition of peach gel pieces to quark with microparticles did not increase liking. When granola pieces were added to quark containing microparticles, liking increased significantly despite that grittiness was still perceived. Temporal Dominance of Sensations (TDS) revealed that addition of granola pieces caused prolonged dominance of positive, crunchy sensations and minimized dominance of negative, gritty sensations. The addition of fat did not lead to a significant increase in liking of quark, although when a medium amount of fat was added (4.4%), it also did not decrease liking significantly. This was probably due to an effective hedonic compensation triggered by more positive sensations (i.e. sweetness). We conclude that addition of crunchy granola pieces or fat can be used as strategies to shift and increase dominance of positive and liked attributes, leading to an increase of overall liking, although negative sensations (grittiness) caused by microparticles are still perceived. This approach could be used to compensate for undesired texture sensations in different types of foods, such as high protein foods.
AB - This study investigated whether the addition of macroparticles or fat can be used to compensate for negative texture sensations in quark. Cellulose beads were added as model microparticles (1.5% w/w; average size: 263 µm) to quark (0% fat) to induce unpleasant gritty sensations. The addition of microparticles to quark significantly increased grittiness and dryness, while creaminess and liking decreased. Three strategies were explored to reduce the impact of unpleasant gritty sensations on consumer perception: two strategies involved the addition of macroparticles (granola or peach gel pieces); the third one consisted of increasing the fat content of the quark (4.4 and 8.8% w/w). For all three strategies, grittiness caused by microparticles did not significantly decrease when macroparticles or fat were present. Addition of peach gel pieces to quark with microparticles did not increase liking. When granola pieces were added to quark containing microparticles, liking increased significantly despite that grittiness was still perceived. Temporal Dominance of Sensations (TDS) revealed that addition of granola pieces caused prolonged dominance of positive, crunchy sensations and minimized dominance of negative, gritty sensations. The addition of fat did not lead to a significant increase in liking of quark, although when a medium amount of fat was added (4.4%), it also did not decrease liking significantly. This was probably due to an effective hedonic compensation triggered by more positive sensations (i.e. sweetness). We conclude that addition of crunchy granola pieces or fat can be used as strategies to shift and increase dominance of positive and liked attributes, leading to an increase of overall liking, although negative sensations (grittiness) caused by microparticles are still perceived. This approach could be used to compensate for undesired texture sensations in different types of foods, such as high protein foods.
KW - Composite foods
KW - Grittiness
KW - Microparticles
KW - Multiparticulate
KW - TDS
KW - Texture perception
U2 - 10.1016/j.foodqual.2019.103842
DO - 10.1016/j.foodqual.2019.103842
M3 - Article
AN - SCOPUS:85076049805
SN - 0950-3293
VL - 81
JO - Food Quality and Preference
JF - Food Quality and Preference
M1 - 103842
ER -