Stiffness gradients facilitate ovipositor bending and spatial probing control in a parasitic wasp

Uroš Cerkvenik, Johan L. Van Leeuwen, Alexander Kovalev, Stanislav N. Gorb, Yoko Matsumura, Sander W.S. Gussekloo

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

Many parasitic wasps use slender and steerable ovipositors to lay eggs in hosts hidden in substrates, but it is currently unknown how steering is achieved. The ovipositors generally consist of three longitudinally connected elements, one dorsal and two ventral valves that can slide along each other. For the parasitic wasp Diachasmimorpha longicaudata, it has been shown that protraction of the ventral valves causes incurving of the ventral valves towards the dorsal one, which results in a change in probing direction. We hypothesize that this shape change is due to differences in bending stiffness along the ovipositor. Alignment of the stiff tip of the dorsal valve with a more flexible ventral S-shaped region situated just behind the tip straightens this S-bend and results in upwards rotation of the ventral tip. We show that the S-shaped region of the ventral valves has a low bending stiffness because it contains soft materials such as resilin. In contrast, the large cross-sectional area of the dorsal valve tip area probably results in a high bending stiffness. Elsewhere, the dorsal valve is less stiff than the ventral valves. Our results support the hypothesis that the interaction between the stiff dorsal valve portion and the more flexible S-shaped region co-determines the configurational tip changes required for steering the ovipositor in any desired direction along curved paths in the substrate. This provides novel insights in the understanding of steering mechanisms of the hymenopteran ovipositor, and for application in man-made probes.
LanguageEnglish
Article numberjeb195628
Number of pages14
JournalThe Journal of experimental biology
Volume222
Issue number9
DOIs
Publication statusPublished - 2 May 2019

Fingerprint

Wasps
ovipositor
wasp
stiffness
Eggs
substrate
Diachasmimorpha longicaudata
probe
egg
Direction compound
parasitic wasps
resilin

Cite this

@article{b6df5f0df9804588b6ac722c09ddefd4,
title = "Stiffness gradients facilitate ovipositor bending and spatial probing control in a parasitic wasp",
abstract = "Many parasitic wasps use slender and steerable ovipositors to lay eggs in hosts hidden in substrates, but it is currently unknown how steering is achieved. The ovipositors generally consist of three longitudinally connected elements, one dorsal and two ventral valves that can slide along each other. For the parasitic wasp Diachasmimorpha longicaudata, it has been shown that protraction of the ventral valves causes incurving of the ventral valves towards the dorsal one, which results in a change in probing direction. We hypothesize that this shape change is due to differences in bending stiffness along the ovipositor. Alignment of the stiff tip of the dorsal valve with a more flexible ventral S-shaped region situated just behind the tip straightens this S-bend and results in upwards rotation of the ventral tip. We show that the S-shaped region of the ventral valves has a low bending stiffness because it contains soft materials such as resilin. In contrast, the large cross-sectional area of the dorsal valve tip area probably results in a high bending stiffness. Elsewhere, the dorsal valve is less stiff than the ventral valves. Our results support the hypothesis that the interaction between the stiff dorsal valve portion and the more flexible S-shaped region co-determines the configurational tip changes required for steering the ovipositor in any desired direction along curved paths in the substrate. This provides novel insights in the understanding of steering mechanisms of the hymenopteran ovipositor, and for application in man-made probes.",
author = "Uroš Cerkvenik and {Van Leeuwen}, {Johan L.} and Alexander Kovalev and Gorb, {Stanislav N.} and Yoko Matsumura and Gussekloo, {Sander W.S.}",
year = "2019",
month = "5",
day = "2",
doi = "10.1242/jeb.195628",
language = "English",
volume = "222",
journal = "Journal of Experimental Biology",
issn = "0022-0949",
publisher = "Company of Biologists",
number = "9",

}

Stiffness gradients facilitate ovipositor bending and spatial probing control in a parasitic wasp. / Cerkvenik, Uroš; Van Leeuwen, Johan L.; Kovalev, Alexander; Gorb, Stanislav N.; Matsumura, Yoko; Gussekloo, Sander W.S.

In: The Journal of experimental biology, Vol. 222, No. 9, jeb195628, 02.05.2019.

Research output: Contribution to journalArticleAcademicpeer-review

TY - JOUR

T1 - Stiffness gradients facilitate ovipositor bending and spatial probing control in a parasitic wasp

AU - Cerkvenik, Uroš

AU - Van Leeuwen, Johan L.

AU - Kovalev, Alexander

AU - Gorb, Stanislav N.

AU - Matsumura, Yoko

AU - Gussekloo, Sander W.S.

PY - 2019/5/2

Y1 - 2019/5/2

N2 - Many parasitic wasps use slender and steerable ovipositors to lay eggs in hosts hidden in substrates, but it is currently unknown how steering is achieved. The ovipositors generally consist of three longitudinally connected elements, one dorsal and two ventral valves that can slide along each other. For the parasitic wasp Diachasmimorpha longicaudata, it has been shown that protraction of the ventral valves causes incurving of the ventral valves towards the dorsal one, which results in a change in probing direction. We hypothesize that this shape change is due to differences in bending stiffness along the ovipositor. Alignment of the stiff tip of the dorsal valve with a more flexible ventral S-shaped region situated just behind the tip straightens this S-bend and results in upwards rotation of the ventral tip. We show that the S-shaped region of the ventral valves has a low bending stiffness because it contains soft materials such as resilin. In contrast, the large cross-sectional area of the dorsal valve tip area probably results in a high bending stiffness. Elsewhere, the dorsal valve is less stiff than the ventral valves. Our results support the hypothesis that the interaction between the stiff dorsal valve portion and the more flexible S-shaped region co-determines the configurational tip changes required for steering the ovipositor in any desired direction along curved paths in the substrate. This provides novel insights in the understanding of steering mechanisms of the hymenopteran ovipositor, and for application in man-made probes.

AB - Many parasitic wasps use slender and steerable ovipositors to lay eggs in hosts hidden in substrates, but it is currently unknown how steering is achieved. The ovipositors generally consist of three longitudinally connected elements, one dorsal and two ventral valves that can slide along each other. For the parasitic wasp Diachasmimorpha longicaudata, it has been shown that protraction of the ventral valves causes incurving of the ventral valves towards the dorsal one, which results in a change in probing direction. We hypothesize that this shape change is due to differences in bending stiffness along the ovipositor. Alignment of the stiff tip of the dorsal valve with a more flexible ventral S-shaped region situated just behind the tip straightens this S-bend and results in upwards rotation of the ventral tip. We show that the S-shaped region of the ventral valves has a low bending stiffness because it contains soft materials such as resilin. In contrast, the large cross-sectional area of the dorsal valve tip area probably results in a high bending stiffness. Elsewhere, the dorsal valve is less stiff than the ventral valves. Our results support the hypothesis that the interaction between the stiff dorsal valve portion and the more flexible S-shaped region co-determines the configurational tip changes required for steering the ovipositor in any desired direction along curved paths in the substrate. This provides novel insights in the understanding of steering mechanisms of the hymenopteran ovipositor, and for application in man-made probes.

U2 - 10.1242/jeb.195628

DO - 10.1242/jeb.195628

M3 - Article

VL - 222

JO - Journal of Experimental Biology

T2 - Journal of Experimental Biology

JF - Journal of Experimental Biology

SN - 0022-0949

IS - 9

M1 - jeb195628

ER -