Status of cross-flow membrane emulsification and outlook for industrial application

A.J. Gijsbertsen-Abrahamse, A. van der Padt, R.M. Boom

Research output: Contribution to journalArticleAcademicpeer-review

116 Citations (Scopus)

Abstract

Cross-flow membrane emulsification has great potential to produce monodisperse emulsions and emulsions with shear sensitive components. However, until now, only low disperse phase fluxes were obtained. A low flux maybe a limiting factor for emulsion production on a commercial scale. Therefore, the effects of membrane parameters on the disperse phase flux are estimated. Besides, the effects of these parameters on the droplet size and droplet size distribution are qualitatively described. Wetting properties, pore size and porosity mainly determine the droplet size (distribution). Membrane morphology largely determines the disperse phase flux. As an example, industrial-scale production of culinary cream was chosen to evaluate the required membrane area of different types of membranes: an SPG membrane, an alpha-Al2O3 membrane and a microsieve. Due to the totally different morphologies of these membranes, the fraction of active pores is I for a microsieve and is very low for the other membranes. The choice of the optimal membrane did not depend on the production strategy: either to produce large quantities or to produce monodisperse emulsions, the best suitable was a microsieve with an area requirement of around I m(2). In general, the total membrane resistance should be low to obtain a large disperse phase flux. In contrast, the membrane resistance should be high to obtain monodisperse emulsions when using membranes with a high porosity. (C) 2003 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)149-159
JournalJournal of Membrane Science
Volume230
Issue number1-2
DOIs
Publication statusPublished - 2004

Keywords

  • shirasu-porous-glass
  • in-water emulsions
  • microchannel emulsification
  • droplet formation
  • ceramic membranes
  • microspheres
  • size
  • pore

Fingerprint Dive into the research topics of 'Status of cross-flow membrane emulsification and outlook for industrial application'. Together they form a unique fingerprint.

Cite this