TY - JOUR
T1 - Statistical Paradigm for Organic Optoelectronic Devices
T2 - Normal Force Testing for Adhesion of Organic Photovoltaics and Organic Light-Emitting Diodes
AU - Vasilak, Lindsay
AU - Tanu Halim, Silvie M.
AU - Das Gupta, Hrishikesh
AU - Yang, Juan
AU - Kamperman, Marleen
AU - Turak, Ayse
PY - 2017
Y1 - 2017
N2 - In this study, we assess the utility of a normal force (pull-test) approach to measuring adhesion in organic solar cells and organic light-emitting diodes. This approach is a simple and practical method of monitoring the impact of systematic changes in materials, processing conditions, or environmental exposure on interfacial strength and electrode delamination. The ease of measurement enables a statistical description with numerous samples, variant geometry, and minimal preparation. After examining over 70 samples, using the Weibull modulus and the characteristic breaking strength as metrics, we were able to successfully differentiate the adhesion values between 8-tris(hydroxyquinoline aluminum) (Alq3) and poly(3-hexyl-thiophene) and [6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) interfaces with Al and between two annealing times for the bulk heterojunction polymer blends. Additionally, the Weibull modulus, a relative measure of the range of flaw sizes at the fracture plane, can be correlated with the roughness of the organic surface. Finite element modeling of the delamination process suggests that the out-of-plane elastic modulus for Alq3 is lower than the reported in-plane elastic values. We suggest a statistical treatment of a large volume of tests be part of the standard protocol for investigating adhesion to accommodate the unavoidable variability in morphology and interfacial structure found in most organic devices.
AB - In this study, we assess the utility of a normal force (pull-test) approach to measuring adhesion in organic solar cells and organic light-emitting diodes. This approach is a simple and practical method of monitoring the impact of systematic changes in materials, processing conditions, or environmental exposure on interfacial strength and electrode delamination. The ease of measurement enables a statistical description with numerous samples, variant geometry, and minimal preparation. After examining over 70 samples, using the Weibull modulus and the characteristic breaking strength as metrics, we were able to successfully differentiate the adhesion values between 8-tris(hydroxyquinoline aluminum) (Alq3) and poly(3-hexyl-thiophene) and [6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) interfaces with Al and between two annealing times for the bulk heterojunction polymer blends. Additionally, the Weibull modulus, a relative measure of the range of flaw sizes at the fracture plane, can be correlated with the roughness of the organic surface. Finite element modeling of the delamination process suggests that the out-of-plane elastic modulus for Alq3 is lower than the reported in-plane elastic values. We suggest a statistical treatment of a large volume of tests be part of the standard protocol for investigating adhesion to accommodate the unavoidable variability in morphology and interfacial structure found in most organic devices.
KW - adhesion testing
KW - degradation
KW - interfaces
KW - metal contact delamination
KW - organic electronics
KW - Weibull statistics
U2 - 10.1021/acsami.6b15618
DO - 10.1021/acsami.6b15618
M3 - Article
SN - 1944-8244
VL - 9
SP - 13347
EP - 13356
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 15
ER -