TY - JOUR
T1 - Stabilization of enzymes against thermal stress and freeze-drying by mannosylglycerate
AU - Ramos, A.
AU - Raven, N.
AU - Sharp, R.J.
AU - Bartolucci, S.
AU - Rossi, M.
AU - Cannio, R.
AU - Lebbink, J.
AU - van der Oost, J.
AU - de Vos, W.M.
AU - Santos, H.
PY - 1997
Y1 - 1997
N2 - 2-O-(beta)-Mannosylglycerate, a solute that accumulates in some (hyper)thermophilic organisms, was purified from Pyrococcus furiosus cells, and its effect on enzyme stabilization in vitro was assessed. Enzymes from hyperthermophilic, thermophilic, and mesophilic sources were examined. The thermostabilities of alcohol dehydrogenases from P. furiosus and Bacillus stearothermophilus and of glutamate dehydrogenases from Thermotoga maritima and Clostridium difficile were improved to a significant extent when enzyme solutions were incubated at supraoptimal temperatures in the presence of 2-O-(beta)-mannosylglycerate, but no effect on the thermostability of glutamate dehydrogenase from P. furiosus was detected. On the other hand, there was a remarkable effect on the thermal stabilities of rabbit muscle lactate dehydrogenase, baker's yeast alcohol dehydrogenase, and bovine liver glutamate dehydrogenase, which were used as model systems to evaluate stabilization of enzymes of mesophilic origin. For all of the enzymes examined and at the highest temperatures tested, 2-O-(beta)-mannosylglycerate was a better thermoprotectant than trehalose. The stabilizing effect exerted by 2-O-(beta)-mannosylglycerate on enzymes suggests a role for this compound as a protein thermostabilizer under physiological conditions. 2-O-(beta)-Mannosylglycerate was also effective in the protection of enzymes against stress imposed by freeze-drying, with its protecting effect being similar to or better than that exerted by trehalose. The data show 2-O-(beta)-mannosylglycerate to be a potential enzyme stabilizer in biotechnological applications.
AB - 2-O-(beta)-Mannosylglycerate, a solute that accumulates in some (hyper)thermophilic organisms, was purified from Pyrococcus furiosus cells, and its effect on enzyme stabilization in vitro was assessed. Enzymes from hyperthermophilic, thermophilic, and mesophilic sources were examined. The thermostabilities of alcohol dehydrogenases from P. furiosus and Bacillus stearothermophilus and of glutamate dehydrogenases from Thermotoga maritima and Clostridium difficile were improved to a significant extent when enzyme solutions were incubated at supraoptimal temperatures in the presence of 2-O-(beta)-mannosylglycerate, but no effect on the thermostability of glutamate dehydrogenase from P. furiosus was detected. On the other hand, there was a remarkable effect on the thermal stabilities of rabbit muscle lactate dehydrogenase, baker's yeast alcohol dehydrogenase, and bovine liver glutamate dehydrogenase, which were used as model systems to evaluate stabilization of enzymes of mesophilic origin. For all of the enzymes examined and at the highest temperatures tested, 2-O-(beta)-mannosylglycerate was a better thermoprotectant than trehalose. The stabilizing effect exerted by 2-O-(beta)-mannosylglycerate on enzymes suggests a role for this compound as a protein thermostabilizer under physiological conditions. 2-O-(beta)-Mannosylglycerate was also effective in the protection of enzymes against stress imposed by freeze-drying, with its protecting effect being similar to or better than that exerted by trehalose. The data show 2-O-(beta)-mannosylglycerate to be a potential enzyme stabilizer in biotechnological applications.
M3 - Article
SN - 0099-2240
VL - 63
SP - 4020
EP - 4025
JO - Applied and Environmental Microbiology
JF - Applied and Environmental Microbiology
IS - 10
ER -