Stability of creatine monohydrate and guanidinoacetic acid during manufacture (retorting and extrusion) and storage of dog foods

Research output: Contribution to journalArticleAcademicpeer-review

Abstract

The stability of creatine monohydrate (CrMH), crystallised guanidinoacetic acid (GAA-C) and granulated GAA (GAA-G) in a moist retorted and a dry extruded dog food formulation during production and storage was investigated. Commercial food mixtures were supplemented with CrMH, GAA-C or GAA-G. Uniformity after mixing and retorting or extrusion was determined based on replicate samples (moist n = 8, dry n = 10). Storage stability was evaluated at 25°C/60% relative humidity for 15 months and 40°C/75% for 6 months. Foods with CrMH were analysed for creatine (Cr) and creatinine (Crn), whereas GAA-C and GAA-G foods were analysed for GAA concentrations. Coefficients of variation (CV) for uniformity of the additives after mixing of moist and dry pet food formulations were below 15%, and the CV was lower in processed mixtures. Recoveries after retorting and extrusion were higher for GAA-G (79 and 99%) and GAA-C (89 and 86%) compared to CrMH (36 and 85%) foods. In moist CrMH food, Cr concentrations re-increased by 54% whilst Crn concentrations decreased by 39% after storage at 25°C for 15 months. With total molar Cr + Crn remaining stable throughout storage, Crn and Cr appeared to effectively interconvert. Storage of the extruded CrMH food at 25°C for 15 months resulted in a 63% decrease in Cr and a 39% increase in Crn concentration. The decrease in Cr concentration was larger at 6 months storage at 40°C compared to 15 months storage at 25°C. Both GAA-C and GAA-G moist and dry foods were stable during storage (<10% decrease). This study showed that GAA is highly stable during production and storage of moist and dry canine foods whilst CrMH is relatively unstable, particularly during storage. The latter makes it difficult to establish a guaranteed Cr content in finished moist retorted and dry extruded foods with CrMH.

LanguageEnglish
JournalJournal of Animal Physiology and Animal Nutrition
DOIs
Publication statusE-pub ahead of print - 9 May 2019

Fingerprint

Food Storage
pet foods
creatine
Creatine
extrusion
manufacturing
Dogs
acids
Food
creatinine
Creatinine
glycocyamine
extruded foods
Pets

Keywords

  • additive
  • creatinine
  • guanidinoacetic acid
  • heat sterilisation
  • stability
  • uniformity

Cite this

@article{28c5c9710dbe47e891631563aa0d3d3f,
title = "Stability of creatine monohydrate and guanidinoacetic acid during manufacture (retorting and extrusion) and storage of dog foods",
abstract = "The stability of creatine monohydrate (CrMH), crystallised guanidinoacetic acid (GAA-C) and granulated GAA (GAA-G) in a moist retorted and a dry extruded dog food formulation during production and storage was investigated. Commercial food mixtures were supplemented with CrMH, GAA-C or GAA-G. Uniformity after mixing and retorting or extrusion was determined based on replicate samples (moist n = 8, dry n = 10). Storage stability was evaluated at 25°C/60{\%} relative humidity for 15 months and 40°C/75{\%} for 6 months. Foods with CrMH were analysed for creatine (Cr) and creatinine (Crn), whereas GAA-C and GAA-G foods were analysed for GAA concentrations. Coefficients of variation (CV) for uniformity of the additives after mixing of moist and dry pet food formulations were below 15{\%}, and the CV was lower in processed mixtures. Recoveries after retorting and extrusion were higher for GAA-G (79 and 99{\%}) and GAA-C (89 and 86{\%}) compared to CrMH (36 and 85{\%}) foods. In moist CrMH food, Cr concentrations re-increased by 54{\%} whilst Crn concentrations decreased by 39{\%} after storage at 25°C for 15 months. With total molar Cr + Crn remaining stable throughout storage, Crn and Cr appeared to effectively interconvert. Storage of the extruded CrMH food at 25°C for 15 months resulted in a 63{\%} decrease in Cr and a 39{\%} increase in Crn concentration. The decrease in Cr concentration was larger at 6 months storage at 40°C compared to 15 months storage at 25°C. Both GAA-C and GAA-G moist and dry foods were stable during storage (<10{\%} decrease). This study showed that GAA is highly stable during production and storage of moist and dry canine foods whilst CrMH is relatively unstable, particularly during storage. The latter makes it difficult to establish a guaranteed Cr content in finished moist retorted and dry extruded foods with CrMH.",
keywords = "additive, creatinine, guanidinoacetic acid, heat sterilisation, stability, uniformity",
author = "{van der Poel}, {Antonius F.B.} and Ulrike Braun and Hendriks, {Wouter H.} and Guido Bosch",
year = "2019",
month = "5",
day = "9",
doi = "10.1111/jpn.13103",
language = "English",
journal = "Journal of Animal Physiology and Animal Nutrition",
issn = "0931-2439",
publisher = "Wiley",

}

TY - JOUR

T1 - Stability of creatine monohydrate and guanidinoacetic acid during manufacture (retorting and extrusion) and storage of dog foods

AU - van der Poel, Antonius F.B.

AU - Braun, Ulrike

AU - Hendriks, Wouter H.

AU - Bosch, Guido

PY - 2019/5/9

Y1 - 2019/5/9

N2 - The stability of creatine monohydrate (CrMH), crystallised guanidinoacetic acid (GAA-C) and granulated GAA (GAA-G) in a moist retorted and a dry extruded dog food formulation during production and storage was investigated. Commercial food mixtures were supplemented with CrMH, GAA-C or GAA-G. Uniformity after mixing and retorting or extrusion was determined based on replicate samples (moist n = 8, dry n = 10). Storage stability was evaluated at 25°C/60% relative humidity for 15 months and 40°C/75% for 6 months. Foods with CrMH were analysed for creatine (Cr) and creatinine (Crn), whereas GAA-C and GAA-G foods were analysed for GAA concentrations. Coefficients of variation (CV) for uniformity of the additives after mixing of moist and dry pet food formulations were below 15%, and the CV was lower in processed mixtures. Recoveries after retorting and extrusion were higher for GAA-G (79 and 99%) and GAA-C (89 and 86%) compared to CrMH (36 and 85%) foods. In moist CrMH food, Cr concentrations re-increased by 54% whilst Crn concentrations decreased by 39% after storage at 25°C for 15 months. With total molar Cr + Crn remaining stable throughout storage, Crn and Cr appeared to effectively interconvert. Storage of the extruded CrMH food at 25°C for 15 months resulted in a 63% decrease in Cr and a 39% increase in Crn concentration. The decrease in Cr concentration was larger at 6 months storage at 40°C compared to 15 months storage at 25°C. Both GAA-C and GAA-G moist and dry foods were stable during storage (<10% decrease). This study showed that GAA is highly stable during production and storage of moist and dry canine foods whilst CrMH is relatively unstable, particularly during storage. The latter makes it difficult to establish a guaranteed Cr content in finished moist retorted and dry extruded foods with CrMH.

AB - The stability of creatine monohydrate (CrMH), crystallised guanidinoacetic acid (GAA-C) and granulated GAA (GAA-G) in a moist retorted and a dry extruded dog food formulation during production and storage was investigated. Commercial food mixtures were supplemented with CrMH, GAA-C or GAA-G. Uniformity after mixing and retorting or extrusion was determined based on replicate samples (moist n = 8, dry n = 10). Storage stability was evaluated at 25°C/60% relative humidity for 15 months and 40°C/75% for 6 months. Foods with CrMH were analysed for creatine (Cr) and creatinine (Crn), whereas GAA-C and GAA-G foods were analysed for GAA concentrations. Coefficients of variation (CV) for uniformity of the additives after mixing of moist and dry pet food formulations were below 15%, and the CV was lower in processed mixtures. Recoveries after retorting and extrusion were higher for GAA-G (79 and 99%) and GAA-C (89 and 86%) compared to CrMH (36 and 85%) foods. In moist CrMH food, Cr concentrations re-increased by 54% whilst Crn concentrations decreased by 39% after storage at 25°C for 15 months. With total molar Cr + Crn remaining stable throughout storage, Crn and Cr appeared to effectively interconvert. Storage of the extruded CrMH food at 25°C for 15 months resulted in a 63% decrease in Cr and a 39% increase in Crn concentration. The decrease in Cr concentration was larger at 6 months storage at 40°C compared to 15 months storage at 25°C. Both GAA-C and GAA-G moist and dry foods were stable during storage (<10% decrease). This study showed that GAA is highly stable during production and storage of moist and dry canine foods whilst CrMH is relatively unstable, particularly during storage. The latter makes it difficult to establish a guaranteed Cr content in finished moist retorted and dry extruded foods with CrMH.

KW - additive

KW - creatinine

KW - guanidinoacetic acid

KW - heat sterilisation

KW - stability

KW - uniformity

U2 - 10.1111/jpn.13103

DO - 10.1111/jpn.13103

M3 - Article

JO - Journal of Animal Physiology and Animal Nutrition

T2 - Journal of Animal Physiology and Animal Nutrition

JF - Journal of Animal Physiology and Animal Nutrition

SN - 0931-2439

ER -