Specific features of the ecological functioning of urban soils in Moscow and Moscow oblast

V.I. Vasenev, N.D. Ananyeva, O.A. Makarov

Research output: Contribution to journalArticleAcademicpeer-review

20 Citations (Scopus)


Urban soils (constructozems) were studied in Moscow and several cities (Dubna, Pushchino, and Serebryanye Prudy) of Moscow oblast. The soil sampling from the upper 10-cm-thick layer was performed in the industrial, residential, and recreational functional zones of these cities. The biological (the carbon of the microbial biomass carbon, Cmic and the microbial (basal) respiration, BR) and chemical (pHwater and the contents of Corg, heavy metals, and NPK) indices were determined in the samples. The ratios of BR to Cmic (the microbial respiration quotient, qCO2) and of Cmic to Corg were calculated. The Cmic varied from 120 to 738 µg C/g soil; the BR, from 0.39 to 1.94 µg CO2-C/g soil per hour; the Corg, from 2.52 to 5.67%; the qCO2, from 1.24 to 5.28 µg CO2-C/mg Cmic/g soil per h; and the Cmic/Corg, from 0.40 to 1.55%. Reliable positive correlations were found between the Cmic and BR, the Cmic and Cmic/Corg, and the Cmic and Corg values (r = 0.75, 0.95, and 0.61, respectively), as well as between the BR and Cmic/Corg values (r = 0.68). The correlation between the Cmic/Corg and qCO2 values was negative (r = -0.70). The values of Cmic, BR, Corg, and Cmic/Corg were found to correlate with the ammonium nitrogen content. No correlative relationships were revealed between the determined indices and the climatic characteristics. The principal component analysis described 86% of the variances for all the experimental data and clearly subdivided the locations of the studied soil objects. The ANOVA showed that the variances of Cmic, Corg, and BR are controlled by the site location factor by 66, 63, and 35%, respectively. The specificity of the functioning of the anthropogenic soils as compared with their natural analogues was clearly demonstrated. As shown in this study, measurable biological indices might be applied to characterize the ecological, environmental-regulating, and productive functions of soils, including urban soils
Original languageEnglish
Pages (from-to)194-205
JournalEurasian Soil Science
Issue number2
Publication statusPublished - 2012


  • microbial biomass carbon
  • land-use change
  • organic-carbon
  • metabolic quotient
  • forest soils
  • arable soils
  • ecosystems
  • ratios
  • qco2

Fingerprint Dive into the research topics of 'Specific features of the ecological functioning of urban soils in Moscow and Moscow oblast'. Together they form a unique fingerprint.

Cite this